LEAN-GIS

Protocols*

(Local Environment for Activity and Nutrition--
Geographic Information Systems)

Version 2.1, January 2012

Edited by Ann Forsyth

Contributors (alphabetically):

Ann Forsyth, PhD, Environmental Measurement Lead
Nicole Larson, Manager, EAT-III Grant
Leslie Lytle, PhD, PI, TREC-IDEA and ECHO Grants
Nishi Mishra, GIS Research Assistant Version 1
Dianne Neumark-Sztainer PhD, PI, EAT-III
Pétra Noble, Research Fellow/Coordinator, Versions 1.3
David Van Riper, GIS Research Fellow Version 1.3/Coordinator Version 2

Assistance from:

Ed D’Sousa, GIS Research Assistant Version 1

http://www.designforhealth.net/resources/trec.html

A Companion Volume to NEAT-GIS Protocols (Neighborhood Environment for Active
Travel), formerly called Environment and Physical Activity: GIS Protocols
at www.designforhealth.net/GISprotocols.html

Contact: www.designforhealth.net/, forsyth@cornell.edu

Preparation of this manual was assisted by grants from the National Institutes of Health for the
TREC-IDEA, ECHO, and EAT-III projects.

This is a work in progress
LEAN: GIS Protocols

TABLE OF CONTENTS

Note: NEAT = Neighborhood Environment and Active Transport GIS Protocols, a companion volume

1. CONCEPTUAL ISSUES .. 5
 1.1. Protocol Purposes and Audiences .. 5
 1.2 Organization of the Protocols Manual .. 5
 1.3 The Context of the Manual: TREC-IDEA followed by EAT-III and ECHO 6
 1.4 Steps in Developing the Manual .. 6
 1.5 Data .. 6
 US Census .. 6
 MetroGIS .. 7
 Health and Agriculture Department Data ... 8
 Commercial Data ... 8
 1.6 Measurement Units ... 11
 1.7 Measurement Logistics ... 11
 1.8 General Measurement Geographies: TREC-IDEA, EAT-III, and ECHO 11

2. FUNDAMENTAL PROTOCOLS AND PROCEDURES ... 12
 Background ... 12
 2.2 Gross Area (including water): See NEAT GIS Protocol 2.2 ... 12
 2.3 Measurement Geography Type 1: Straight Line or Airline Buffer: See NEAT GIS Protocol 2.5 (2010 EAT-III & ECHO) .. 12
 2.4 Measurement Geography Type 2: Network or Street Distance Buffer (2010 EAT-III & ECHO--New Sausage Version) .. 13
 6. GIS Steps .. 14
 2.5 Measurement Geography Type 3: Straight Line or Airline Distance to Nearest Feature: See NEAT GIS Protocol 2.7. (2010 EAT-III & ECHO) 15
 2.6 Measurement Geography Type 4: Network or Street Distance to Nearest Feature (2010 EAT-III & ECHO) .. 16
 2.7 Measurement Geography Type 5: Home to School Route Buffer 19

3. RESTAURANTS A.K.A. FOOD SERVICES .. 23
 3.1 Distance to Nearest Restaurant (2010 EAT-III & ECHO) ... 24
 3.2 Restaurant Density (2010 EAT-III & ECHO) ... 26
 3.3: Distance to Fast Food Restaurants (2010 EAT-III & ECHO) 27
 3.4 Fast Food Restaurant Density (2010 EAT-III & ECHO) .. 28
 3.5 Distance to Fast Food Restaurant Subtypes (EAT-III) ... 31
 3.6 Density Fast Food Restaurant Subtypes (EAT-III) .. 33
 3.7 Distance to Non Fast Food Restaurants ... 33
 3.8 Density of Non Fast Food Restaurants ... 35
 3.9 Restaurant Density Adjusted for Chain Duplicates (EAT-III) 37
4. FOOD STORES .. 39
 4.1 Distance to any Retail Food Outlet--All Stores Selling Food (not restaurants) 39
 4.2 Density of all Retail Food Outlets (not restaurants) .. 42
 4.3 Distance to Groceries, Supermarkets, or Super Centers (2010 EAT-III & ECHO) 45
 4.4 Density of Groceries, Supermarkets, or Super Centers (2010 EAT-III & ECHO) 47
 4.5 Distance to Large Supermarkets or Super Center (2010 EAT-III) 50
 4.6 Density of Large Supermarkets or Super Centers (2010 EAT-III) 52
 4.7 Type of Nearest Retail Food Outlet .. 55
 4.8 Distance to Nearest Convenience Store Including Gas Stations (2010 EAT-III & ECHO) 59
 4.10 Distance to Farmers Market (2010 EAT-III) .. 64
 4.11 Distance to Alcohol Sales Places .. 65
 4.12 Density of Alcohol Sales Places.. 69

5. YOUTH AND UTILITARIAN OR RECREATIONAL PHYSICAL ACTIVITY 72
 DENSITY .. 72
 5.1 Raw Population per Unit Land Area: See NEAT GIS Protocol 3.1 72
 5.2 Population per Unit Land Area (without water): See NEAT GIS Protocol 3.2 (2010 EAT-III & ECHO) .. 72
 5.3 Residential Population in Residential Parcels (Residential Density) (without water): based on NEAT GIS Protocol 3.4 but updated .. 72
 5.4 Employment Per Unit Land Area: Based on NEAT GIS Protocol 3.6 but updated 76
 5.5 Distance to Nearest Transit Stop: Based on NEAT GIS Protocol 4.10 but updated (2010 ECHO) ... 78
 5.6 Transit Stop Density: See NEAT GIS Protocol 4.11 (2010 EAT-III) 79
 5.7 Percentage of Total Parcel Area in Major Land Uses (residential, commercial, office, industrial, institutional, park and recreation, vacant): Based on NEAT GIS Protocol 5.1 (2010 EAT-III)) .. 80
 5.8 Retail Employment Density: Updated from on NEAT GIS Protocol 5.11 (EAT-III) 85
 5.9 Distance to Nearest Facility (Mentioned in the Survey): Stores in Total, Hardware Stores

5.10 Average Census Block Area: See NEAT GIS Protocol 6.1 (2010 EAT-III) 89
 5.11 Median Census Block Area: Based on NEAT GIS Protocol 6.2 but updated (2010 EAT-III) .. 89
 5.12 Number of Access Points (LEAN version) (2010 EAT-III) ... 91
 5.14 Intersections per Unit Area (LEAN version) (2010 ECHO) ... 96
 OTHER BUILT-ENVIRONMENT RELATED/SPATIAL VARIABLES 98
 5.15 Proportion of High Functional Classifications [i.e. busy streets]: See NEAT GIS Protocol 7.1 (2010 EAT-III & ECHO) .. 98
 5.16 Distance to Nearest Park (2010 EAT-III & ECHO) .. 98
 5.17 Distance to Nearest Gym or Fitness Facility (2010 EAT-III & ECHO) 103
 5.18 Distance to Nearest Recreation Center, Community Center, or School (2010 EAT-III & ECHO) .. 106
 5.19 Density/Number of Recreation Centers, Community Centers, or Schools (2010 EAT-III & ECHO) .. 108
5.20 Distance to Nearest Bicycle or Pedestrian Trail Access Point (2010 EAT-III) .. 109
5.21 Distance to School Attended (2010 EAT-III & ECHO) .. 115

6. CENSUS AND CRIME DATA—GIS MEASURES .. 118
 Background ... 118
 6.1 Proportion Female Headed Households (2010 EAT-III) .. 118
 6.2 Median Household Income (2010 EAT-III) .. 119
 6.3 Proportion High School Graduates (2010 EAT-III) .. 120
 6.4 Proportion in Poverty (2010 EAT-III) .. 121
 6.5 Median Assessed Home Value (2010 EAT-III) ... 123
 6.6 Proportion in 14 and Under (2010 EAT-III) ... 126
 6.7 Local Street Crime (2010 EAT-III) ... 128

7. DATA STORAGE AND SHARING ... 129
 Steps/Problems with Obtaining Data .. 129
 Storing/Sharing Data ... 129

APPENDICES ... 131
 Appendix 1A: Food Data Comparison .. 131
 Appendix 1B: Licensing Information for Food, Beverage, and Lodging in the Twin Cities 133
 Study Area Geography and Licensing Jurisdictions ... 133
 Minnesota Department of Health .. 133
 Counties and Cities—see Version 1.0 .. 134
 Appendix 1C; Food, Beverage, and Lodging (FBL) Contacts ... 135
 Appendix 1D: Dun and Bradstreet Data vs. Business Analyst ... 136
 Sample Document ... 136
 Business Analyst Attributes .. 137
 Appendix 1E: Notes on SIC and NAICS coding ... 138
 Appendix 1F: Protocol/Geography/Data Matrix TREC-IDEA ... 139
 Appendix 1G: EAT-III and ECHO measures ... 141
 Appendix 2A: GIS Steps for Old Protocol 2.4: Network Buffer .. 145
 Appendix 2B: Logic for Developing the “Sausage” Network Buffer 148
 Appendix 3A: Wikipedia and Quick Serve Restaurant Fast Food Lists 2007 155
 Appendix 4A: Wikipedia Supermarket List 2007 ... 158

REFERENCES .. 164
1. CONCEPTUAL ISSUES

1.1. Protocol Purposes and Audiences

This manual provides protocols for measuring environmental variables associated with food, youth and physical activity used in the Minnesota TREC-IDEA study (TREC = Transdisciplinary Research on Energetics and Cancer). It is a companion to an earlier manual NEAT-GIS Protocols (Neighborhood Environment for Active Transport) developed for the Twin Cities Walking Study (TCWS) (Forsyth 2005, 2006, 2007, 2010) and available at http://www.designforhealth.net/GISprotocols.html.

The manual has three purposes:

- To record the methods for environmental measurement used in the study.
- To document methods for replication.
- To make GIS research methods and data sources less opaque.

1.2 Organization of the Protocols Manual

The manual is organized into eight sections.

1. This introduction provides an overview of the study and data.
2. Fundamental protocols and procedures for measuring land area and various buffer areas, distances, and paths. These are used in all other measurers.
3. Food service measurement protocols--measuring densities of and distances to various kinds of restaurants as a proxy for measuring food quality.
4. Food store measurement protocols--from convenience grocery to super centers, as another proxy for quality.
5. Measurement protocols related to utilitarian and recreational physical activity among youth. Many of these protocols simply refer the reader to Environment and Physical Activity: GIS Protocols, developed for the Twin Cities Walking Study (TCWS GIS Protocols): http://www.designforhealth.net/GISprotocols.html. This includes distances to parks, gyms, and trails.
6. Protocols related to census variables.
7. Protocols for data storage and data sharing.
8. Appendices, keyed to specific chapters, followed by references.

Protocols themselves take a specific format. Each one contains six main parts that are described in more depth in a related article (Forsyth et al 2006). These are: Basic Concept; Basic Formula, Basic Definition, or Basic Procedure; Detailed Formula or Detailed Definition; Comments and Explanations; GIS Approach; and GIS Steps. It should be noted that these steps often indicate one of several ways to do measurements.
1.3 The Context of the Manual: TREC-IDEA followed by EAT-III and ECHO

The manual was initially written in the context of a research project measuring the neighborhood built environment related to healthy (and otherwise) eating and physical activity of youth. This project was part of a larger project on Transdisciplinary Research on Energetics and Cancer, Examining the Obesity Epidemic through Youth, Family, and Young Adults led by PI Robert Jeffrey. This manual was written for a substudy, the Identifying Determinants of Eating and Activity (IDEA) project led by PI Leslie Lytle.

Overweight and obesity among adolescents is increasing across the globe, but the rise is particularly dramatic in the United States. This study looks at cancer and obesity risks by examining psychological, social, genetic, and environmental features. This manual focuses on one component, measuring the built environment at a community level including such factors as population density, street pattern, mixed use, pedestrian infrastructure, and access to different kinds of food stores and restaurants. For more information about the larger TREC program see: https://www.compass.fhcrc.org/trec/ and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819263/.

The manual was subsequently updated for two other studies: Eating Among Teens, part three (EAT-III) and Etiology of Childhood Obesity (ECHO) see: http://www.sph.umn.edu/epi/research/eat/index.asp for more detail.

1.4 Steps in Developing the Manual

This manual follows the approach of the NEAT GIS Protocols Manual but is based on further review of the literature on health and food. In addition, a number of changes in ArcGIS came about after the physical activity protocols manual had been developed, most notably a very significant change in the way network buffers were constructed. This manual reflects the results of investigations into the effects of those changes.

The manual has also gone through several versions:

- Version 1 was created for the TREC-IDEA study as a companion to the earlier NEAT-GIS Protocols, with LEAN-GIS adding measures on food and recreation physical activity with a focus on youth. These versions were created in October 2006 and June 2007.
- Version 2 was refined for the EAT-III and ECHO studies and was updated to Arc-GIS 9.3 where needed.

1.5 Data

The following lists data used in these specific studies. Analysts using different data may need to modify protocols. General problems with GIS data are described in Forsyth et al. (2006, 2010) and in the companion NEAT manual in section 1.5.

US Census
www.census.gov
Description: SF1 files at the block and block-group level and SF3 at the block-group level for TREC-IDEA. Given changes to the US census, later versions have been converted for use with the new 2010 census and American Community Survey.

Metadata: Metadata for census variables are available in a number of parts of the census Web site. For details on downloading large SF# files see http://www.census.gov/support/SF3ASCII.html

MetroGIS
www.metrogis.org
www.datafinder.org

Description: This is the GIS group supported by the Metropolitan Council of the Twin Cities, a state agency that does planning and analysis for seven counties at the core of the Twin Cities metropolitan area. Its data include a number of useful layers complete with metadata and accessible from http://www.datafinder.org/catalog.asp. Not all data are free and many require specific agreements to be made between the user and the data owner:

General data

- 2000 Digital Orthophotos (2 feet per pixel resolution)
- Generalized Land Use, 2000
- Counties, Cities and Townships
- MetroGIS Regional Parcel Dataset - Current (updated quarterly)
- Water Features from 2000 Land-Use Data (supplements Ramsey County water layer)

- NCompass Data (note name change of data from earlier versions)—Streets, Points of Interest, and Census
- Census Geography 2000 – NCompass Aligned; Blocks, Block Groups & Tracts. This is the MetroGIS-endorsed version of the census data and the one we used. It has the census geographies better aligned with the TLG roads layer
- NCompass Landmarks – Areas of Interest
- NCompass Landmarks – Lines of Interest
- NCompass Landmarks – Points of Interest
- NCompass Street Centerline Edits Table
- NCompass Street Centerlines and Address Ranges

- Bus Route Segments
- Bus Routes
- Bus Service
- Bus Shelters
- Bus Stops
- Transit Centers
Other
- Regional Trails – Existing and Proposed
- Metadata: Most are available linked to the data finder Web site at http://www.datafinder.org/catalog.asp

Health and Agriculture Department Data
Businesses selling food need to be licensed by various agencies. In broad terms, restaurants are licensed by departments of health and food stores by the department of agriculture. However, many businesses combine elements of each—such as a delicatessen selling sandwiches and packaged goods. Businesses selling only packaged goods have specific requirements. In some states such licensing is done at the state level, providing consistent data collection. Unfortunately this is not the case in Minnesota. Appendix 1A contains more detail about these data sources. In summary:

- Food stores including packaged goods are typically regulated by cities and counties—see Appendix 1A for sample data and Appendix 1B.
- Restaurants/food service: In Minnesota these are typically regulated by health departments. Some are regulated by the state health department but in the Twin Cities, a number of cities and counties have been delegated this role. The list of agencies is included in Appendix 1C.

Unfortunately, each jurisdiction collects different data with the only things in common being name and address (see Appendix 1A for a table showing examples of the different data).

Commercial Data
There are several commercial databases available for business addresses (e.g. Dun and Bradstreet, InfoUSA/ESRI Business Analyst) as well as more specialized data for specific purposes such as stores with soda fountains (Forsyth et al. 2010)

Commercial data often includes industrial classification codes called SIC or NAICS codes (old Standard Industrial Classification codes used to 1997 and North American Industrial Classification System codes used since 1997 with refinement in 2002 and 2007). Dun and Bradstreet data, see below, is an example of data using such codes and was the data source in version 1 of this manual; later versions use Business Analyst (see below). These codes come in a variety of levels—from 2 to six digits, with longer coded being more specific. For example, the following NAICS 2002 codes relate to food and beverage stores:

44-45 Retail Trade
445 Food and Beverage Stores
 4451 Grocery Stores
 44511 Supermarkets and Other Grocery (except Convenience) Stores
 445110 Supermarkets and Other Grocery (except Convenience) Stores
 44512 Convenience Stores
 445120 Convenience Stores
 4452 Specialty Food Stores
 44521 Meat Markets
 445210 Meat Markets
 44522 Fish and Seafood Markets
445220 Fish and Seafood Markets
44523 Fruit and Vegetable Markets
445230 Fruit and Vegetable Markets
44529 Other Specialty Food Stores
445291 Baked Goods Stores
445292 Confectionery and Nut Stores
445299 All Other Specialty Food Stores
4453 Beer, Wine, and Liquor Stores
44531 Beer, Wine, and Liquor Stores
445310 Beer, Wine, and Liquor Stores

The following refer to restaurants
72 Accommodation and Food Services
722 Food Services and Drinking Places
7221 Full-Service Restaurants
72211 Full-Service Restaurants
7222 Limited-Service Eating Places
72221 Limited-Service Eating Places
722211 Limited-Service Restaurants
722212 Cafeterias
722213 Snack and Nonalcoholic Beverage Bars
7224 Drinking Places (Alcoholic Beverages)
72241 Drinking Places (Alcoholic Beverages)
722410 Drinking Places (Alcoholic Beverages)

However it should be noted there are other places selling food such as dinner theaters.

In addition, in the food area, NAICS has typically fewer subtypes of businesses but is potentially more accurate. For example, the following are all coded 445299 in NAICS but have several different 4-digit SIC codes

<table>
<thead>
<tr>
<th>2002 NAICS</th>
<th>1997 NAICS</th>
<th>1987 SIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>445299</td>
<td>445299</td>
<td>5499</td>
</tr>
<tr>
<td>445299</td>
<td>445299</td>
<td>5451</td>
</tr>
<tr>
<td>445299</td>
<td>445299</td>
<td>5499</td>
</tr>
<tr>
<td>445299</td>
<td>445299</td>
<td>5451</td>
</tr>
<tr>
<td>445299</td>
<td>445299</td>
<td>5499</td>
</tr>
</tbody>
</table>

Source: http://www.census.gov/epcd/naics02/def/ND445299.HTM
A full list of codes is available at http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2007 and a comparison between NAICS and SIC codes is at http://www.census.gov/epcd/naics02/N02TOS87.HTM

The problem faced by researchers is that the NAICS/SIC codes are not always accurately applied in commercial databases, particularly for beyond the two and three digit levels. However, using such databases and names of chains it is possible to classify, for example, fast food restaurants or major supermarket chains. **This was the approach taken in version 2.**

The following is a list of potential commercial data with sources and comments. More detail about coding is included in Appendix 1E):

- **Dun and Bradstreet (used in version 1 of this manual):** D&B is a business information provider. Companies apply for a D-U-N-S number (Dun and Bradstreet Universal Numbering System) for free. According to Wikipedia 100 million companies have done so, globally. A sample entry is included in Appendix 1D. Useful data include exact address, SIC/NAICS code, number of employees, sales volume, and square footage of buildings. Addresses can be matched to parcels. The main Dun and Bradstreet web site for the U.S. is at: http://www.dnb.com/us/. This is an excellent source of data but is quite expensive—one year of data for the Twin Cities is approximately $13,000. Using 2005 data Krizek et al. (2007) counted 123,668 businesses in the Twin Cities metro area. We used these data for the TREC-IDEA study but after completing a comparison with Business Analyst decided to use it for the EAT-III and ECHO studies as more cost effective (Forsyth et al 2010).

- **Business Analyst (InfoUSA/ESRI) (used in version 2 of this manual):** ESRI (originally the Environmental Systems Research Institute) is the creator of the ArcGIS suite of GIS software, the most used GIS software in the U.S. Business Analyst is integrated with their software and uses InfoUSA as the business database—a listing of 11 million U.S. businesses by “business name, industry description or SIC/North American Industry Classification System, sales, employees, and location” (http://www.esri.com/software/arcgis/extensions/businessanalyst/about/high-quality.html). It also includes the Directory of Major Malls, a list of 4,000 larger shopping centers. InfoUSA data are compiled from phone books, business directories, public filings, and U.S. Postal Service National Change of Address files, checked by phoning businesses. However, addresses are not always exactly matched and coding is not always precise. For example, in one part of the Twin Cities only 90 percent of addresses were matched to streets; the rest to zip codes. Most restaurants were classified as limited service (akin to fast food). The main InfoUSA web site is http://list.infousa.com/. Using 2006 data Krizek et al. (2007) counted 93,840 businesses in the Twin Cities metro area. However, this is a less expensive data source. One year of data costs approximately $3,500 for the Twin Cities. **For version 2 and later we used InfoUSA to locate restaurants in general and a set of chain names and key words to locate fast food.**

More details about the data are in Appendix 1D.
1.6 Measurement Units

This protocol manual uses metric measurement units.

1.7 Measurement Logistics

These protocols generally use existing data and do not involve fieldwork.

1.8 General Measurement Geographies: TREC-IDEA, EAT-III, and ECHO

The TREC-IDEA study examined two major youth environments—home and school. Other parts of the study looked at the environments within the home and school. In the TREC-IDEA study we used the geographies below. It should be noted that in early versions of the companion *NEAT GIS Protocols* we also examined 200m network buffers. Changes in network analyst made it problematic to use the 200m network buffers (there were many oddly shaped of zero size buffers, but of a different shape to previous versions). Further, ongoing research did not show any special association between these buffers and physical activity. For these reasons we dropped the 200m network buffer.

<table>
<thead>
<tr>
<th>School</th>
<th>Home</th>
<th>Home to School **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight line</td>
<td>Straight line</td>
<td>Straight line</td>
</tr>
<tr>
<td>200m</td>
<td>200m</td>
<td>50 m either side</td>
</tr>
<tr>
<td>400m</td>
<td>400m</td>
<td></td>
</tr>
<tr>
<td>800m</td>
<td>800m</td>
<td></td>
</tr>
<tr>
<td>1600m</td>
<td>1600m</td>
<td></td>
</tr>
<tr>
<td>3000m</td>
<td>3000m</td>
<td></td>
</tr>
<tr>
<td>Distance to nearest feature</td>
<td>Distance to nearest feature</td>
<td>Distance to nearest feature</td>
</tr>
</tbody>
</table>

For EAT-III and ECHO we decided on fewer geographies and also decided to use a new network buffering technique that we call the “sausage buffer” less susceptible to unexplained changes in the GIS software. The specific geographies and protocols used in these studies are explained in Appendices 1F and 1G and are indicated in **bold** above.
2. FUNDAMENTAL PROTOCOLS AND PROCEDURES

Note: these protocols draw on work previously done in the companion physical activity protocols but were updated and modified for this study by Ann Forsyth (selection of protocols) and Nishi Mishra and David Van Riper (GIS steps).

Background

This project includes buffers and distance measures for three areas: home, school, and the path between. The key issue that the first versions of these protocols had to deal with was that with the introduction of a new version of network analyst, the program that created street distance (network) buffers for ArcGIS 9. In 2006 the software programmers radically changed the way that buffers are made. However, they did not document this. The issues around these changes are described in more detail in the protocols for network buffers. We used the proprietary network buffers in the TREC-IDEA study but changed to what we call “sausage buffers” for the EAT-III and ECHO studies. These use a different approach to making buffers, one that is more easily reproduced and that we believe represents the neighborhood environment as accurately.

This uses the existing *NEAT GIS Protocol*. Be sure to use the latest version-- preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

2.2 Gross Area (including water): See NEAT GIS Protocol 2.2

This uses the existing *NEAT GIS Protocol*. Be sure to use the latest version-- 4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

2.3 Measurement Geography Type 1: Straight Line or Airline Buffer: See NEAT GIS Protocol 2.5 (2010 EAT-III & ECHO)

This uses the existing *NEAT GIS Protocol*. Be sure to use the latest version-- 4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.
2.4 Measurement Geography Type 2: Network or Street Distance Buffer (2010 EAT-III & ECHO--New Sausage Version)

Note: This version is new for version 2.0. Version 1 was adapted from the NEAT GIS Protocol 2.6 but dealt with updates to Arc GIS that fairly radically changed the method of creating network buffers and thus their area and shape. The GIS steps for that version are now in Appendix 2A. This new version uses a different approach, creating a sausage shaped area along each street.

1. Basic Concept

A network buffer includes the area within x distance along a street network from the starting point (a school or home in this case). In ArcGIS9 a new version of network analyst fundamentally changed the way network buffers are created. In version 2.0 we decided to avoid using this kind of buffer and substitute a buffer along routes—the “sausage” buffer that is easier to replicate in different programs. Our logic is described in Appendix 2B.

2. Basic Definition

A network buffer is an area within X-meters street distance of a point (or a polygon) measured by moving along the street network.

3. Detailed Definition

A sausage network buffer is an area within X-meters street distance of a point (or a polygon) moving along the street network and buffered at an amount of Y meters either side of the street—this amount is called the “radius” to distinguish it from the overall buffer “distance”.

4. Comments and Explanations

The exact “radius” distance is being assessed and will be described in version 2.1 of these protocols. It will likely be 100-200 meters. The protocol uses a rounded buffer and in order for the buffer to extend exactly X-meters, the radius of the sausage is deducted from X (so in order to have the buffer extend X meters, it is actually drawn out X-Y meters.

For the EAT-III and TREC studies the buffer distances are listed in appendix 1G. The street network distance may be from a home, work place, school, or other relevant spot. More specifically, it is the distance along the street network from the house or building’s street location. Note, it is possible to manually locate buildings using aerial photos and this may be more appropriate than centroids in smaller studies. This is a little trickier to do in GIS than the straight-line buffer. There is little guidance in the literature. Some work has been done on buffering routes between two places and comparing buffers of shortest distances with actual routes travelled and they often don’t coincide (Badland et al. 2010).

In addition, it would be preferable to add in pedestrian networks but in these studies with highly dispersed populations, large numbers of participants, and small GIS budgets, that was not possible.

5. GIS Approach

The GIS approach for creating the sausage buffers requires two steps. First, use the Service Area Solver in the Network Analyst extension for ArcGIS 9.3.1 to calculate service areas around the set
of point features, in this case the study participants. The Service Area Solver will create both polygons and lines that comprise the service area. These lines serve as the input for step 2. Second, buffer the lines using a particular distance to create the sausage buffers.

6. GIS Steps
The following procedure was completed using ArcInfo 9.3.1

Requirements for ArcGIS 9.3.1:
1. Road Layer polyline
2. Point feature to calculate the sausage network buffer around (Participant or School)

Generate the Network Buffer Lines

1. Start **ArcMap**
2. On the Main Menu, click Tools and click on Extensions
 a. Check Network Analyst Extension
 b. Click Close
3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location, created earlier
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap
 c. Click Yes to add all the feature classes that participate in the network dataset to the map
4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Point Layer to be used in the analysis, in this case the Participant layer
 b. Click on the Point Layer and click Add to add it to the map
5. In the Table of Contents, right-click on the Participant layer and click Open Attribute Table
 a. In the Attribute Table
 i. Click the Options button
 ii. Click Add Field…
 iii. Add the Participant ID as a Text field
 1. Type Part_ID_T in the Name field
 2. Select Text (50) as Type
 3. Accept default as the Length
 4. Click OK
 iv. Add the Participant ID as an Integer field
 1. Type Part_ID in the Name field
 2. Select Long Integer as Type
 3. Accept default (0) as Precision
 4. Click OK
 v. Enter the assigned ID for Part_ID_T and Part_ID
6. On the Main Menu, click View
 a. Click on Toolbars
 b. In the side menu click Network Analyst to add the Network Analyst toolbar to ArcMap
 c. Click the Network Analyst Window button on the toolbar to open the window
7. On the Network Analyst toolbar, click Network Analyst Dropdown Menu
 a. Click New Service Area
 b. The Table of Contents and the Network Analyst window will contain an empty list of Facilities, Barriers, Lines, and Polygons
8. Right-click on Facilities in the Network Analyst window and click Load Locations
 a. In the Load Locations window
 i. Click Browse and navigate to the Participant/School Point Feature Layer
 ii. Choose the Participant ID (Part_ID) as the Sort field
 iii. Choose the Participant ID text field (Part_ID_T) as the Name field and accept the defaults for the other Location Analysis Properties options
iv. Use 50 meters for Location Position, Use Geometry
v. Click OK

9. Right-click on the Service Area in the Table of Contents and select Properties
 a. In the Analysis Settings tab:
 i. Choose Length (meters) for Impedance
 ii. Type the Buffers distance for the Default Breaks
 iii. Choose Away from Facility for Direction
 iv. Choose Everywhere for Allow U-Turns
 b. In the Line Generation tab:
 i. Click the check-box next to Generate Lines
 ii. In the Overlap Options section, click the radio-button next to Overlapping
 c. Click OK to close the Properties dialog box

10. On the Network Analyst Toolbar, click the Solve button
11. Right-click on the Lines layer in the Table of Contents and select Data -> Export Data…
 a. Choose the Output Location and OK to export the lines to a shapefile
12. Dissolve the exported shapefile on FacilityID to merge all lines for a participant into one feature
 a. Click on the ArcToolbox icon to open the ArcToolbox window
 b. Open the Data Management Toolbox, then open the Generalization toolbox and double-click the
 Dissolve tool
 i. For Input Features, select the line shapefile just exported
 ii. Specify the Output Feature Class
 iii. Click on the checkbox next to FacilityID in the Dissolve Field(s) box
 iv. Click OK
13. Join the Participant attributes to the dissolved line shapefile
 a. Right-click on the dissolved line shapefile
 b. Click Joins and Relates and then Joins…
 i. Choose Join attributes from a table for the “What do you want to join to this layer?”
 ii. Choose Facility ID as the Field to base the join on
 iii. Choose the Participant Layer as the Table to Join to this layer
 iv. Choose the Participant ID as the field in the table to base the join on
 v. Click OK to execute the join
14. Right click the dissolved line shapefile
15. Click on Data and then Export Data
 a. Choose this layer’s source data for the coordinate system
 b. Specify the output location
 c. Click OK to export the data
16. Buffer the exported shapefile by XX meters to create the sausage buffers
 a. In ArcToolbox, open the Analysis Toolbox, then open the Proximity toolbox and double-click the
 Buffer tool
 i. For Input Features, select the line shapefile with the joined participant attributes
 ii. Specify the Output Feature Class
 iii. Set the Linear Units to XX meters
 iv. Choose Full for the Side Type
 v. Choose Flat for the End Type
 vi. Choose None for the Dissolve Type
 vii. Click OK to execute the buffer

The part of the protocol for undertaking the density calculation is not included.

2.5 Measurement Geography Type 3: Straight Line or Airline Distance to Nearest Feature: See NEAT GIS Protocol 2.7. (2010 EAT-III & ECHO)
This uses the existing NEAT GIS Protocol. Be sure to use the latest version--4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

2.6 Measurement Geography Type 4: Network or Street Distance to Nearest Feature (2010 EAT-III & ECHO)

Note: this is similar to a protocol in the NEAT GIS Protocols manual but this one is most up to date. Updated in version 2.0.

1. Basic Concept
The airline distance to a feature such as a restaurant may be important, but the street distance may well be closer to people’s experiences. The street distance does not always match the distance via pedestrian paths, sidewalks, and short cuts. In the IDEA, EAT-III, and ECHO studies we were not able to do data collection of such paths but used the straight line distance as an approximation. In addition, the new ArcGIS created a new method for calculating such distances.

2. Basic Definition
The street distance between a youth’s home or school and the feature of interest.

3. Detailed Definition
The street distance between a youth’s home or school and the feature of interest calculated using the TLG roads layer for the Twin Cities (modified from the census) and ArcGIS 9.3.1 Network Analyst.

4. Comments and Explanations
This is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. The OD Cost Matrix calculates the network distance between all origin features (participant’s home or school) to all features in the destination layer (feature of interest layer). For each origin-destination pair, the output of the OD Cost Matrix function contains the network distance and the rank of that distance in comparison to all other destinations for that origin. A rank of 1 represents the shortest network distance for a given origin.

5. GIS Approach
The approach for this measure is to load a set of origins and destinations, then use the OD Cost Matrix function in Network Analyst to calculate the network distance from each origin to the nearest destination.

6. GIS Steps
Requirements for ArcGIS 9.3.1:
1. Road Layer polyline
2. Point Features to calculate the nearest distance from (Participant layer/ school layer).
3. The feature of interest layer (Point features) to calculate the nearest distance to (Restaurants/Gym/Retail food outlet)
4. Network Analyst Extension for ArcGIS 9.3.1

Calculate the Network Distance to Nearest Feature of Interest
1. Start ArcMap
2. On the Main Menu click **Tools** and Click on **Extensions**.
 a. Check **Network Analyst Extension**.
 b. Click Close

3. Click the **Add Data** button on the **Standard Toolbar**
 a. Navigate to the **Network Dataset** location, created earlier
 b. Click on the **Network Dataset** and click **Add** to add the Network Dataset to ArcMap.
 c. Click **Yes** to add all the feature classes that participate in the network to the map.

4. Click the **Add Data** button on the **Standard Toolbar**
 a. Navigate to the **Point Layers** to be used for analysis, in this case **Participant location and Feature of Interest Locations**
 b. Click on the **Point Layers** and click **Add** to add it to ArcMap.

5. In the Table of Contents Right Click the **Point Layer** and click on **Open Attribute Table**
 a. In the **Attribute Table**
 i. Click **Options**
 ii. Click **Add Field**
 iii. Add the **Feature_Of_Interest_Id/Participant_Id** as Text
 - Type **FOI_Id_T(Feature of interest)/Part_Id_T** in the **Name** field
 - Select **Text (50)** as **Type**
 - Accept default for **Length**
 - Click **OK**
 iv. Add the **Feature_Of_Interest_Id/Participant_Id** as Integer
 - Type **FOI_Id/Part_Id** in the **Name** field
 - Select **Short Integer** as **Type**
 - Accept default (0) for **Precision**
 - Click **OK**
 v. Enter the assigned Id for the participants and schools

6. On the main menu click **View**
 a. Click on **Toolbars**
 b. In the side menu click **Network Analyst** to add the Network Analyst toolbar to ArcMap

7. Click **Network Analysis Toolbar**
 a. Click **Network Analyst Window** button to add the Network Analyst Window to the map

8. On the **Network Analyst Toolbar** Click **Network Analyst Dropdown Menu**
 a. Click **New OD Cost Matrix**
 b. The Table of contents and the Network Analyst Window contains empty list of **Origins**, **Destinations**, **Barriers** and **Lines** Categories.

9. On the **Network Analyst Window** right-click **Origins** and click **Load Locations**
 a. In **Load Locations Window**
 i. Click **Browse** and navigate to the **Participant/School Point feature layer**
 ii. Click on the **Participant/School layer** and click **Add**
 iii. Choose the **Participant/School Id** as the **Sort** field
 iv. Choose the **Participant/School Id Text** as the **Name** field. Accept the **default** for other **Location Analysis Properties**
 v. Use **50 Meters** for **Location Position, Use Geometry** (increase the search tolerance if many locations are unlocated)
 vi. Click **OK**

10. On the **Network Analyst Window** right Click **Destinations** and Click **Load Locations**
 a. In **Load Locations Window**
i. Click **Browse** and navigate to the **Feature of Interest Locations, Point feature layer**

ii. Click on the **Feature of Interest Locations layer** and click **Add**

iii. Choose the **Feature of Interest Id** as the **Sort** field

iv. Choose the **Feature of Interest Id Text** as the **Name** field. Accept the **default** for other Location Analysis Properties

v. Use 100 Meters for the **Location Position, Use Geometry**

vi. Click **OK**

11. To set the properties to be used in the Analysis, In the Table of Contents Right-Click the OD Cost Matrix and Click **Properties**

 a. Click on **Analysis Settings Tab**

 i. Choose **Length (Meters)** for **Impedance**

 ii. Choose **None** for **Default Cutoff Values**

 iii. Choose <All> for **Destinations to Find**

 iv. Choose **Everywhere** for **Allow U-Turns**

 v. Choose **None** as **Output Shape Type**

 vi. Check the box to **Ignore Invalid Locations**

 b. Click **Ok**

12. On the **Network Analyst Toolbar**, click **Solve Button**

13. The output of the OD Cost Matrix is stored in the **Lines layer**. Right-click on Lines and choose Open Attribute Table.

 a. Name is the Origin-Destination pair

 b. OriginID is the Participant/School ID

 c. DestinationID is the Feature of Interest ID

 d. DestinationRank is the ranking of the distance for that OriginID

 e. Total-Length is the distance, in meters, between the origin and the destination

14. Joining the OD Cost Matrix attributes with Origin Point Layer to carry over the data

 a. Right Click the **Lines Layer**

 b. Click **Joins and Relates** and then **Join**

 i. Choose **Origin Id** as the Field to base the join on

 ii. Choose the **Participant/SchoolLayer** as the Table to Join to this layer

 iii. Choose the **Participant/School ID** as the field in the table to base the join on

 iv. Click Ok

 c. Right Click the **Lines Layer**

 d. Click on **Data** and then **Export Data**

 i. Choose **this layer’s source data** for the coordinate system

 ii. Specify the Output location

15. To select the closest destination for each origin, right-click on the layer from the previous step and choose **Open Attribute Table**

 a. Click on the **Options** button and select **Select by Attributes…**

 b. In the Select by Attributes dialog box, form the following query:

 i. DestinationRank = 1

 c. Click **Apply** to execute the query

 d. Click on the **Options** button and select **Export…**

 e. Set the **Export** dropdown option to **Selected Records**

 f. Specify the Output location and click OK to save data.

In ArcGIS 9.3.1 the name field of routes contains the Incident Id (Participant Id) to Facility ID (Feature of Interest ID). It indicates which Participant is connected to which Feature of Interest via the route.
The length of the nearest distance segment from a participant’s location to the nearest feature of interest is stored in the Total Length attribute.

2.7 Measurement Geography Type 5: Home to School Route Buffer

Note: this was updated slightly in Version 1.3 to take account of home-schooled children and change the buffer from 100m to 50 m on either side of the route (though as is discussed in the “GIS Approach” there may be reasons to change it back). It is not being updated in version 2.0 because it is not being used in ECHO or EAT-III.

1. Basic Concept
The idea behind this measure is that the home to school route is important for youth, and the features (businesses, recreation opportunities, densities, etc) along the route may be an important part of the youth’s daily environment. Complications occur because youth may take the bus or be driven and they may not take the shortest route. This measurement is exploratory.

2. Basic Definition
The shortest network path between home to school and an area 50m on either side of it.

3. Detailed Definition
The shortest network path between home to school and an area 50m on either side of it using the TLG street layer from Metro GIS.

4. Comments and Explanations
This is fairly easy to do in ArcGIS 9.3.1 compared to ArcGIS 9.1 due to the ability of ArcGIS 9.3.1 to calculate multiple routes. We initially proposed to exclude freeways and other limited access highways which would not be accessible to pedestrians, but because students going to school might well be in cars we decided that this would not be an appropriate exclusion. Also, we removed home-schooled students from the participant dataset before calculating the route. ArcGIS 9.3.1 will not calculate a route if the student’s school and home are the same location.

5. GIS Approach
The GIS approach for this protocol is a two stage process. First, create the shortest network path between Home to School, and then buffer it for a distance of 50 meters. The route solver with multiple routes in Network Analyst 9.2 creates the route from each participant home location to the respective school. The route created by Network Analyst is then buffered using Buffer Tool in ArcToolbox, the buffer created represents the area of 50 meters around the route (reduced from an initial 100 meters). Round buffer type is used to be able to cover all the area accessible to the participant. Note that Badland et al. (2010) conducted pilot testing of adults and consider 100 meters to be better than 25 meters as an approximation of the environment on the actual route travelled (they did not test 50 meters). However, we did not use this after TREC-IDEA so we have not considered whether it is worth updating for children.

6. GIS Steps
Requirements:

1. Roads Layer Network dataset
2. Participant Home Location Point Feature Layer for origin
3. School Location Point Feature Layer for destination
4. Network Analyst Extension for ArcGIS 9.2

I. Create Home To School Route
 1. Start ArcMap
 2. On the Main Menu click Tools and Click on Extensions.
 a. Check Network Analyst Extension.
 b. Click Close
 3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location.
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap.
 c. Click No to add all the feature classes, which participate in the network, to the map.
 4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Point Layers to be used for analysis, in this case Participant Home location and School Locations
 b. Click on the Point Layers and click Add to add it to ArcMap.
 5. If the School Id and Participant ID’s are already assigned go to next step else, In the Table of Contents Right Click the Point Layer and click on Open Attribute Table
 a. In the Attribute Table
 i. Click Options
 ii. Click Add Field
 iii. Add the School_Id/Participant_Id as Text
 ▪ Type School_Id_T/Participant_Id_T in the Name field
 ▪ Select Text (50) as Type
 ▪ Accept default for Length
 ▪ Click OK
 iv. Add the School_Id/Participant_Id as Integer
 ▪ Type School_Id/Participant_Id in the Name field
 ▪ Select Short Integer as Type
 ▪ Accept default (0) for Precision
 ▪ Click OK
 v. Enter the assigned Id for the participants and schools
 6. On the main menu click View
 a. Click on Toolbars
 b. In the side menu click Network Analyst to add the Network Analyst toolbar to ArcMap
 7. Click Network Analysis Toolbar
 a. Click Network Analyst Window button to add the Network Analyst Window to the map
 8. In ArcToolbox Click on Network Analyst Tools and then Click on Calculate Locations
 a. Add the School Location Point layer as the Input Point Layer
 b. Add the Road Network Dataset as the Input Analysis network
 c. Accept all other defaults
 d. Click Ok
 9. Join the School and Participant layer using School Id,
 a. In the Table of contents Right Click Participant Location layer
 b. Click Join and Relates and then Join
 i. Choose School Id as the field to base the join on
ii. Choose the School Location layer as the Table to Join to this layer
iii. Choose the School Id as the field in the table to base the join on
iv. Click Ok

10. On the Network Analyst Toolbar Click Network Analyst Dropdown Menu
 a. Click New Route
 b. The Table of contents and the Network Analyst Window contains empty list of Stops, Barriers and Routes Categories.

11. On the Network Analyst Window right click Stops and then click Load Locations, to add the origin locations
 a. In Load Locations Window
 i. Choose the Participant Location layer for Load from, these points would be the origin stops.
 ii. Choose Participant Id as the Sort Field
 iii. Choose the Participant Id as the Name and RouteName
 iv. Choose Search Tolerance of 100 meters for location position
 v. Click Ok

12. Again right click Stops and then click Load Locations, to add the destination locations
 a. In Load Locations Window
 i. Choose the Participant Location layer for Load from
 ii. Choose School.School Id as the Sort Field
 iii. Choose the School.School Id as the Name
 iv. Choose the Participant.Participant Id as the RouteName
 v. Choose Use Network Location Fields, calculated in Step 8 for location position
 ▪ Choose PosAlong from School Point layer attributes for PosAlong Property
 ▪ Choose SideOfEdge from School Point layer attributes for SideOfEdge Property
 ▪ Choose SourceID from School Point layer attributes for SourceID Property
 ▪ Choose SourceOID from School Point layer attributes for SourceOID Property
 vi. Click on Advance Tab
 ▪ Check Snap to Position Along Network
 ▪ Check Loading locations using locations fields
 vii. Click Ok

13. Click Solve Button to generate the routes
14. Join the route layer with Source Point layer to carry over the data
 a. Right Click the Routes Layer
 b. Click Joins and Relates and then Join
 i. Choose Name as the Field to base the join on
 ii. Choose the Participant Location Layer as the Table to Join to this layer
 iii. Choose the Participant ID Text as the field in the table to base the join on
 iv. Click Ok
 e. Right Click the Routes Layer
 f. Click on Data and then Export Data
 iii. Choose this layer’s source data for the coordinate system
 iv. Specify the Output location

II. Create 100 meters buffer around the route from Home to School
1. Click Analysis Tools
2. Click Proximity
3. Click Buffer
 a. Add the Route layer created in Step 14 as the Input Layer
 b. Name the output feature class appropriately
 c. Type 50 meters as the Linear unit for Distance
 d. Choose Full as Side Type
e. Choose **Round** as the **End Type**
f. Choose **None** as **Dissolve Type**
g. Click **Ok**

You now have the route layer and the area of 50 meters around it.
3. RESTAURANTS A.K.A. FOOD SERVICES

Note: these protocols were developed by Ann Forsyth (definitions and concepts), Nishi Mishra (GIS steps), and Dave Van Riper (GIS steps).

Typically, in research to date, restaurants have been identified in four ways:

- Some municipalities have very detailed land use data allowing identification of restaurants as a group and of different types (Forsyth 2006). Such data are not consistently available across the seven counties of the Twin Cities Metropolitan area.
- Some areas have a consistent food service licensing process across the relevant study area meaning similar data are collected and stored. As is explained in chapter 1, this is not the case in the Twin Cities as there is a maze of licensing bodies in that region.
- Many researchers have used lists of chain restaurant names to identify major fast food restaurants in either GIS studies or for surveys (e.g. Pereira et al 2005; Block et al 2004). EAT-III and ECHO propose to take this approach to identify specific kinds of restaurants (e.g. fast food). A key issue is that fast food is a broad category including not only the prototypical burger joints but potentially also such limited service chains as Starbucks.
- Other researchers have used SIC or NAICS codes to classify types of stores. This was the approach we used in the TREC-IDEA study. EAT-III and ECHO use these codes for larger categories such as restaurants. As was noted in chapter 1, the accuracy of these classifications varies greatly across databases. In TREC-IDEA we used Dun and Bradstreet that seemed, in our initial assessment, to have more accurate and detailed classifications than other available sources. However, on balance for the EAT-III and ECHO studies we proposed that Business Analyst would be most cost effective and for subsets of restaurants we could use names.

There are three sorts of measures that are included in these protocols:

- Some measures repeat those already used in the literature.
- Other measures try to take advantage of improvements in data or GIS technologies to develop new measures to more effectively measure food quality. After all, it is not really important whether someone eats at a fast food restaurant or a restaurant with table service. What is most important is the quality and character of the food that they purchase and eat.
- Others try to measure using GIS what is also being measured via survey or checklist in other parts of the studies. In this way we can analyze perceived vs. GIS or observed vs. GIS measures.

A more detailed discussion about the pros and cons of differing approaches to measuring food access is in Forsyth et al. (2010a).
3.1 Distance to Nearest Restaurant (2010 EAT-III & ECHO)

Updated in version 2.0.

1. **Basic Concept**
 The idea of this measure is that the street distance or straight line to any away from home restaurant will affect the number of away from home meals. This measure does not distinguish between types of restaurants.

2. **Basic Definition**
 Distance to nearest restaurant = The shortest (a) network or (b) straight line path between home or school and the nearest restaurant.

3. **Detailed Definition**
 Distance to nearest restaurant = The shortest network or straight line path between home or school and the nearest restaurant where restaurants are defined as the following NAICS codes:
 - 722110 Full-Service Restaurants
 - 722211 Limited-Service Restaurants
 - 722212 Cafeterias
 - 722213 Snack and Nonalcoholic Beverage Bars (part)

 As these are studies of adolescents, we did not include alcoholic beverage drinking places or dinner theaters. The updated measure uses Business Analyst data that is already geocoded. The TREC-IDEA version used Dun and Bradstreet that had to be geocoded and was checked against phone books and internet databases (Forsyth et al. 2010).

4. **Comments and Explanations**
 This is done by using the OD Cost Matrix option in Network Analyst Extension of or the Near Tool in ArcGIS 9.3.1. For network distance, a point layer, to which the shortest network distance is to be calculated, is specified as the “destination” layer and the point, from which the distance is to be calculated, serves as the origin.

 For points that do not fall on the network, there is a dialog box when using this extension that allows the user to decide how far away from the network to search for points to use in the processing. Points outside that distance will not be used.

5. **GIS Approach**
 The approach for this measure is to load a set of origins and destinations, then use the OD Cost Matrix solver in Network Analyst to calculate the network distance from each origin to each destination. The OD Cost Matrix solver ranks the network distance from each origin to all destinations with ranking #1 being the shortest distance. The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. **GIS Steps**
 Requirements:
 - 1. Road Layer polyline
 - 2. Point Features for origin and destinations
3. Network Analyst Extension for ArcGIS 9.3.1

Query and extract data for Restaurants according to specified NAICS codes from the Business Analyst InfoUSA data, if the restaurant layer is not already prepared.

1. Start ArcMap

2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst data
 b. Click on the Business Analyst data and click Add to add the dataset to the Map

3. Right Click the Business Analyst data and click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "NAICS_EXT" in the Attributes list and click on Unique values (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click "=" operator
 iv. Click or Type ‘72211001’
 v. Click “OR” operator
 vii. Click Apply
 c. Right Click the Business Analyst data and Click Data and then Export data
 i. Choose Selected Features for Export
 ii. Choose this layer’s source data for Use the same coordinate system as:
 iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 iv. Click OK
 v. Click Yes to add the data to current data frame

A. Calculate the Network Distance to Nearest Restaurant
 1. Use LEAN Protocol 2.6 to determine the network distance to the nearest restaurant. The participant locations are the origins and the restaurant locations are the features of interest

The length of the nearest distance segment from a participant’s location to the nearest restaurant is stored in the Total Length attribute.

B. Straightline distance
 1. Open ArcToolbox, then click Analysis Tools
 2. Click on Proximity Tools
 3. Click on Near tool
 a. Navigate and Choose Participant layer as the Input Features
 b. Navigate and Choose Restaurant layer as Near Features
 c. Click Ok

The straightline distance to nearest restaurant is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Restaurant.
3.2 Restaurant Density (2010 EAT-III & ECHO)

Note: The GIS Steps for calculating the network buffer were updated in Version 1.3. Updated in version 2.0.

1. Basic Concept
The idea behind this measure is that the density of away-from-home restaurants within a certain radius or street distance will affect the number of away-from-home meals. This in turn will affect the amount and character of what people eat. This measure does not distinguish between types of restaurants.

2. Basic Definition
Restaurant density = Total restaurants per unit land area (excluding water).

3. Detailed Definition
Restaurant density = Total restaurants per unit land area (excluding water) where restaurants are defined as the following NAICS codes:
- 722110 Full-Service Restaurants
- 722211 Limited-Service Restaurants
- 722212 Cafeterias
- 722213 Snack and Nonalcoholic Beverage Bars (part)

As the focus of all three studies for these protocols (TREC-IDEA, EAT-III, and ECHO) was on adolescents, we did not include alcoholic beverage drinking places or dinner theaters. There is, however, a separate question dealing with alcohol.

4. Comments and Explanations
To calculate the density of restaurants, it is necessary to first demarcate the area within which the density will be calculated (e.g. a buffer) and then count the number of restaurants in the area. After the area is demarcated and the number of restaurants is counted, the density is simply calculated by dividing the number of restaurants by the area.

While NAICS codes in Business Analyst are not particularly effective at distinguishing between limited service (fast food) and full service restaurants, as this protocol looks at all restaurants that isn’t a problem for this protocol.

5. GIS Approach
The GIS approach for calculating the density of restaurants is to count the number of restaurants that fall within the buffers created with Protocols 2.3 and 2.4, with the water area removed using Protocol 2.1. The count is generated using a spatial join. Then, the density is calculated by dividing the number of restaurants by the area of the buffer.

6. GIS Steps
Requirements:
1. Restaurant Layer (Point)
2. Participant Network Buffers with Water Areas removed
3. Participant Straightline Buffers with Water Areas removed
II. Use the steps in LEAN protocol 3.1 to create the Restaurant Point layer from the Business Analyst InfoUSA data if not already created.
III. Load the Participant buffers into ArcMap
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffers and click Open to add them to the ArcMap document

IV. Spatially join the restaurants to the Participant buffers
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
 c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Restaurant layer
 d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it”
 e. For 3. The result of the join will be saved into a new layer, specify the output location and name
 f. Click OK to execute the spatial join

V. Calculate the density of the restaurants in the buffer
 a. Right-click on the output from the previous step and select Open Attribute Table
 b. Click on the Options button and select Add Field…
 1. For the Name, type RestCXXXX where XXXX is the buffer distance
 2. Set the Type to Integer
 3. Accept the defaults for Scale and Precision
 4. Click OK to add the attribute
 c. Right-click on the RestCXXXX attribute and select Field Calculator…
 1. In the field calculator, construct the following query: [Count_
 2. Click OK to execute the query
 d. Click on the Options button and select Add Field…
 1. For the Name, type RestDXXXX where XXXX is the buffer distance
 2. Set the Type to Double
 3. Accept the defaults for Scale and Precision
 4. Click OK to add the attribute
 e. Right-click on the RestDXXXX attribute and select Field Calculator…
 1. In the field calculator, construct the following query: [RestCXXXX] / [Hectares]
 2. Click OK to execute the query

The RestDXXXX field contains the density of restaurants per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers.

3.3: Distance to Fast Food Restaurants (2010 EAT-III & ECHO)
Note: this was significantly updated in Version 1.3 changing the method for selecting fast food restaurants from chain names to NAICS codes; it was changed back to restaurant names in version 2.0.

1. Basic Concept
While fast food is a commonly understood term, it is actually quite difficult to define it in a meaningful way. It is also not particularly clear that fast food per se is less healthy than slower food as there are choices in both types. However, more research is needed in this area and definitional clarity will help such research.

The TREC-IDEA study used two types of questions about this restaurant type; one asking a global question about fast food in general and the other breaking the restaurants into subcategories.
• PS63 In the past month, how many times did you buy food at a restaurant where food is ordered at a counter or at a drive-through window (there is no waiter/waitress)? (Based on Project EAST (10)) Fast Food
• SS163 During a normal school week, how many days per week do you get lunch off campus at a fast food restaurant? (TACOS Student Survey (11))
• SS 173 About how long would it take to get from your home to the nearest fast food restaurant if you walked? (Adapted from NEWS B12 (14))
• PS 70 During the past 7 days, how many times was a family evening meal purchased from a fast food restaurant and eaten either at the fast food restaurant or at home? (Part 1, #4 Jayne's Family Meal Packet)

In the TREC-IDEA study we used NAICS codes and Dun and Bradstreet data to locate fast food restaurants, specifically:
- 722211 Limited-Service Restaurants
- 722213 Snack and Nonalcoholic Beverage Bars

Dun and Bradstreet classified 48% in this category and a visual review of the data indicated that the classifications seemed largely appropriate (see Appendix 1E). However, as Dun and Bradstreet data was not geocoded and thus expensive both to buy and process for analysis, we decided to shift to Business Analyst in ECHO and EAT-III (Forsyth et al. 2010).

That meant we had to move to the alternative of using chain names to classify fast food (e.g. Pereira et al 2005; Block et al. 2004: Bourdette and Whitacker 2003, 59).

We developed a logical process as follows:
1. Start with a list of all restaurants (from the previous protocol, and using NAICS codes)
2. Search for two kinds of restaurants:
 a. Ones with key words indicating fast food e.g. “pizza”, “taco”, “burger”, ”fried,” “ice cream,” ”gelato,” “donut,” “burrito”, “coffee”, “sub”, “sandwich”, “espresso”, “custard”, “bagel”, “cookie”, “to go”, “take out”, “carry out”.
 b. Ones from important chains e.g. “Wendy’s” from the list of chains in Appendix 3A updated with some local chains.

2. **Basic Definition**
Distance to Fast Food Restaurants = The shortest network or straight line distance between home or school and the nearest fast food restaurant.

3. **Detailed Definition**
Distance to Fast Food Restaurants = The shortest network or straight line distance between home or school and the nearest fast food restaurant defined in the following way and using Business Analyst:
1. Start with a list of all restaurants (from the previous protocol, and using NAICS codes)
2. Search for two kinds of restaurants: (a) ones with key words and (b) ones from a list of chains. The two studies had different emphases.
 - The ECHO study (following on the IDEA approach) emphasized a comprehensive list of restaurants.
 - The EAT-III study wanted to match particular types of restaurants.

ECHO list
a. Key words e.g. “pizza”, “taco”, “burger”, “fried,” “ice cream,” “gelato,” “donut”, “burrito”, “coffee”, “sub”, “sandwich”, “espresso”, “custard”, “bagel”, “cookie”, “to go”, “take out”, “carry out.”.

EAT-III List
A. Key words: e.g. “pizza”, “taco”, “burger”, ”fried,” “burrito”, “sub”, “sandwich”, “cookie”, “to go”, “take out”, “carry out.”.

4. Comments and Explanations
This is similar to the protocol 3.1, distance to nearest restaurant, and calculates the distance to nearest fast food restaurant by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. For detailed explanation see Protocol 3.1

5. GIS Approach
First the Fast Food Restaurants are extracted from the master data and then the nearest distance to these locations is calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using the Near tool in ArcToolbox.

For detailed explanation see Protocol 3.1.

6. GIS Steps

Requirements:

1. Road Network feature dataset
2. Point Features (Fast Food Restaurants layer) for finding the nearest distance to
3. Point Features (Participants layer) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.3.1

I. Query and extract data for Fast Food Restaurants from the Business Analyst InfoUSA data, according to names specified in the master list, if the restaurant layer is not already prepared

1. Start ArcMap
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click on Add Field…
 i. Type “FastFood” in the Name box
 ii. Click OK to add the field to the table
 c. Click on Options and then click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click CONAME in the attributes list.
 iii. Click the “LIKE” button
 iv. Type in ‘%PIZZA%’
 v. Click “OR” operator
 vi. Click on “CONAME” again.
 vii. Click the “LIKE” button
 viii. Type in ‘%TACO%’
 ix. Repeat these steps for each of the following terms: [SEE LISTS ABOVE]
 x. Click Apply to execute the query. This query will select all companies with the terms in their names.
 xi. Right-click on the FastFood attribute in the table and select Field Calculator…
 xii. Type 1 into the box and click OK to set the selected records equal to 1
 xiii.
 d. Click on Options again and then click Select by Attributes
 i. Select Create a new selection as Method
ii. Click **CONAME** in the attributes list and then click on **Unique values**

iii. Click the “=” operator

iv. Click on one of the fast food chain names in the Unique Values

v. Click “OR” operator

vi. Repeat steps ii-iv for all other fast food chain names [above]

vii. Click **Apply** to execute the query. This query will select all records with the specified names.

viii. Right-click on the Fast Food attribute in the table and select Field Calculator…

ix. Type 1 into the box and click OK to set the selected records equal to 1

e. Right Click the **Business Analyst InfoUSA data** and Click **Data** and then **Export data**

i. Choose **Selected Features** for Export

ii. Choose **this layer’s source data** for **Use the same coordinate system as:**

iii. Navigate to appropriate folder and give the output file an appropriate name for **Output shapefile or feature class**

iv. Click **OK**

v. Click **Yes** to add the data to current data frame

II. Calculate the Network to the Nearest Fast Food Restaurant

A. Use LEAN Protocol 2.6 to determine the network distance to the nearest restaurant. The participant locations are the origins and the fast food restaurants are the features of interest

B. Straight line distance

1. Open **ArcToolbox**, then click **Analysis Tools**

2. Click on **Proximity Tools**

3. Click on **Near tool**

 a. Navigate and Choose **Participant Layer** as the **Input Features**

 b. Navigate and Choose **Fast Food Restaurants layer** as **Near Features**

 c. Click **OK**

The straightline distance to nearest fast food restaurant is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Fast-Food Restaurant.

3.4 Fast Food Restaurant Density (2010 EAT-III & ECHO)

Note: This protocol was updated in Version 1.3 to use NAICS codes to identify fast food restaurants. It was, however, changed in version 2.0 to use chain names.

1. Basic Concept
The number of restaurants close to where someone lives or goes to school may be more important than the nearest one. After all in food, choices are often important. This measures the density of the comprehensive list of fast food restaurants in Protocol 3.3.

2. Basic Definition
Fast Food Restaurant Density = Total fast food restaurants per unit land area (excluding water).

3. Detailed Definition
Fast Food Restaurant Density = Total fast food restaurants per unit land area (excluding water) where fast food restaurants are defined in the following way and using Business Analyst:

 1. Start with a list of all restaurants (from the previous protocol, and using NAICS codes)
3. Search for two kinds of restaurants: (a) ones with key words and (b) ones from a list of chains. The two studies had different emphases.
 - The ECHO study (following on the IDEA approach) emphasized a comprehensive list of restaurants.
 - The EAT-III study wanted to match particular types of restaurants.

 See protocol 3.3. for the exact lists.

4. Comments and Explanations
The protocol is similar to the Protocol 3.2, Density of Restaurants. However, only the fast food restaurants are used in this case. The area within which the density has to be calculated is demarcated, the number of fast food outlets in the area is counted and the number is divided by the area to get the density.

5. GIS Approach
First, the fast food restaurants are extracted from the master data and then a buffer area is created using Network Analyst. Then, the water features are erased from the buffers using Erase tool, and then the area of the buffer layer with erased water features is calculated. The number of retail food outlets is counted with a spatial join between the buffer layer and the retail food outlet location layer. The number of retail food outlet locations is then divided by the area in hectares to get the density.

For a detailed explanation refer to GIS Approach in Protocol 3.2

6. GIS Steps
Requirements:
 1. Fast Food Restaurant Layer (Point)
 2. Participant Network Buffers with Water Areas removed
 3. Participant Straightline Buffers with Water Areas removed
 4.

I. Use the Fast Food restaurant layer created for Protocol 3.3, or follow the GIS steps in Protocol 3.3 to create the Fast Food restaurant layer.

II. Load the Participant Buffers into ArcMap
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffers and click Open to add them to the ArcMap document

III. Spatially join the fast food restaurants to the Participant buffers
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
 c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Fast Food Restaurant layer
 d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it”
 e. For 3. The result of the join will be saved into a new layer, specify the output location and name
 f. Click OK to execute the spatial join

IV. Calculate the density of the fast food restaurants in the buffer
 a. Right-click on the output from the previous step and select Open Attribute Table
b. Click the Options button and select Add Field…
 i. For the Name, type FFCXXXX where XXXX is the buffer distance
 ii. Set the Type to Integer
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute

c. Right-click on the FFCXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [Count_]
 ii. Click OK to execute the query

d. Click on the Options button and select Add Field…
 i. For the Name, type FFDXXXX where XXXX is the buffer distance
 ii. Set the Type to Double
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute

e. Right-click on the FFDXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [FFCXXXX] / [Hectares]
 ii. Click OK to execute the query

The FFDXXXX field contains the density of fast food restaurants per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participants buffers.

3.5 Distance to Fast Food Restaurant Subtypes (EAT-III)

This is a variation on the fast food restaurant protocol (3.3). It uses the same steps but looks at four specific subtypes of fast food restaurant chosen because they were easiest to reliably identify: traditional burger and fries; pizza; subs and sandwiches; and all others.

3.6 Density Fast Food Restaurant Subtypes (EAT-III)

This is a variation on the fast food restaurant protocol (3.4). It uses the same steps but looks at four specific subtypes of fast food restaurant chosen because they were easiest to reliably identify: traditional burger and fries; pizza; subs and sandwiches; and all others.

3.7 Distance to Non Fast Food Restaurants.

Note: This protocol was updated in Version 1.3 to reflect the use of NAICS codes. It was updated in version 2 for the New ArcGIS but is not being use in any study.

1. Concept

The TREC-IDEA survey asked students about their perceived distance to non fast food restaurants:

- SS 175 About how long would it take to get from your home to the nearest non-fast food restaurant if you walked? (Adapted from NEWS B15 (14))
- PS 71 During the past 7 days, how many times was a family meal purchased and eaten in other types of restaurants (i.e., full-service, sit down type)? (Part 1, #5 Jayne's Family Meal Packet).
To do this we will subtract the fast food restaurants identified in protocols 3.3 and 3.4, from the total restaurants identified in protocols 3.1 and 3.2. This is a really rough measure but is the best approximation we could make given available data.

2. Basic Definition
Distance to Non Fast Food Restaurants = The shortest network or straight line distance between home or school and the nearest non-fast food restaurant.

3. Detailed Definition
Distance to Non Fast Food Restaurants = The shortest network or straight line distance between home or school and the nearest non-fast food restaurant where this is defined as the universe of all restaurants using the following NAICS codes:
- 722110 Full-Service Restaurants
- 722212 Cafeterias

4. Comments and Explanations
This is similar to the protocol 3.1, distance to nearest restaurant, however this protocol calculates the distance to nearest non-fast food restaurant by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1.

For detailed explanation see Protocol 3.1.

5. GIS Approach
First the Fast Food Restaurants are identified in the master restaurant list created in Protocols 3.1 and 3.2. All remaining restaurants in the master list are considered Non-Fast Food Restaurants. Then the nearest distance to these locations is calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox.

For detailed explanation see Protocol 3.1

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Point Features (Non-Fast Food Restaurants layer) for finding the nearest distance to
3. Point Features (Participants layer) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.1 or ArcGIS 9.2

1. Extract the Non-Fast Food Restaurants from the master restaurant dataset created in Protocols 3.1/3.2
 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Master Restaurant dataset
 b. Click on the Master Restaurant dataset and click Add to add the dataset to the Map
 3. Right Click the Master Restaurant dataset and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
i. Select **Create a new selection** as Method
ii. Click on "**FastFood**" in the Attributes list
iii. Click "**=**" operator
iv. Click or Type 0
v. Click **Apply**
c. **Right Click** the Master Restaurant dataset and Click **Data** and then **Export data**
i. Choose **Selected Features** for **Export**
ii. Choose **this layer's source data** for **Use the same coordinate system as:**
iii. Navigate to appropriate folder and give the output file an appropriate name for **Output shapefile or feature class**
iv. Click **OK**
v. Click **Yes** to add the data to current data frame

II. Calculate the Network Distance to the Nearest Non-Fast Food Restaurant

A. Use LEAN Protocol 2.6 to determine the network distance to the nearest non-fast food restaurant. The participant locations are the origins and the non-fast food restaurant locations are the features of interest

B. Straight line distance

1. Open **ArcToolbox**, then click **Analysis Tool**
2. Then click **Proximity Tools**
3. Click on **Near tool**
 a. Navigate and Choose **Participant Layer** as the **Input Features**
 b. Navigate and Choose **Non-Fast Food Restaurants layer** as **Near Features**
 c. Click **OK**

The straight line distance to nearest non fast food restaurant is stored in the attribute table of Participant layer under field name Near_Dist. The Near_FID field has the FID of the Nearest Non-Fast Food Restaurant.

3.8 Density of Non Fast Food Restaurants

Note: This protocol was updated in Version 1.3 to reflect the use of NAICS codes. It was updated in version 2 for the New ArcGIS but is not being use in any study.

1. **Basic Concept**
 This density measure is the companion to protocol 3.7.

2. **Basic Definition**
 Density of Non Fast Food Restaurants = Total non fast food restaurants per unit land area (excluding water).

3. **Detailed Definition**
 Density of Non Fast Food Restaurants = Total non fast food restaurants per unit land area (excluding water) where non fast food restaurants are defined as the universe of all restaurants using the following NAICS codes:
 - 722110 Full-Service Restaurants
 - 722212 Cafeterias

4. **Comments and Explanations**
 The protocol is similar to the Protocol 3.2, Density of Restaurants, However only the non-fast food restaurants are used in this case. The area within which the density has to be calculated is
demarcated, the number of retail food outlets in the area is counted and the number is divided by the area to get the density.

For a detailed explanation refer to Protocol 3.2.

5. GIS Approach
First the Fast Food Restaurants are identified in the master restaurant list created in Protocols 3.1 and 3.2. All remaining restaurants in the master list are considered Non-Fast Food Restaurants. Then, the number of retail food outlets is counted with a spatial join between the buffer layer and the retail food outlet location layer. The number of retail food outlet locations is then divided by the area in hectares to get the density.

For a detailed explanation refer to GIS Approach in Protocol 3.2.

6. GIS Steps
Requirements:
1. **Road Network** feature dataset
2. **Point Features (Non-Fast Food Restaurants layer)** for finding the nearest distance to
3. **Point Features (Participants layer)** for finding the nearest distance from
4. **Network Analyst Extension** ArcGIS 9.2

I. Extract the Non-Fast Food Restaurants from the master restaurant dataset created in Protocols 3.1/3.2
 1. Start **ArcMap**
 2. Click the **Add Data** button on the **Standard Toolbar**.
 a. Navigate to the Master Restaurant dataset
 b. Click on the Master Restaurant dataset and click **Add** to add the dataset to the Map
 3. Right Click the Master Restaurant data and Click **Open Attribute Table**
 a. Click on **Options**
 b. Click **Select by Attributes**
 i. Select **Create a new selection** as **Method**
 ii. Click on "FastFood" in the Attributes list and click on **Unique values** (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click ‘=’ operator
 iv. Click or Type 1
 v. Click **Apply**
 c. Right Click the Dun & Bradstreet data and Click **Data** and then **Export data**
 i. Choose **Selected Features** for Export
 ii. Choose **this layer’s source data** for **Use the same coordinate system as:**
 iii. Navigate to appropriate folder and give the output file an appropriate name for **Output shapefile or feature class**
 iv. Click **OK**
 v. Click **Yes** to add the data to current data frame

II. Load the Participant buffers into ArcMap
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffer and click Open to add them to the ArcMap document

III. Spatially join the restaurants to the Participant buffers
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Non-Fast Food Restaurants layer

d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it

e. For 3. The result of the join will be saved into a new layer, specify the output location and name

f. Click OK to execute the spatial join

IV. Calculate the density of the non-fast food restaurants in the buffer

a. Right-click on the output from the previous step and select Open Attribute Table

b. Click on the Options button and select Add Field…

i. For the Name, type NFFCXXXX where XXXX is the buffer distance

ii. Set the Type to Integer

iii. Accept the defaults for Scale and Precision

iv. Click OK to add the attribute

c. Right-click on the NFFCXXXX attribute and select Field Calculator…

i. In the field calculator, construct the following query: [Count_

ii. Click OK to execute the query

d. Click on the Options button and select Add Field…

i. For the Name, type NFFDXXXX where XXXX is the buffer distance

ii. Set the Type to Double

iii. Accept the defaults for Scale and Precision

iv. Click OK to add the attribute

e. Right-click on the NFFDXXXX attribute and select Field Calculator…

i. In the field calculator, construct the following query: [NFFCXXXX] / [Hectares]

ii. Click OK to execute the query

The NFFCXXXX field contains the density of non-fast food restaurants per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers.

3.9 Restaurant Density Adjusted for Chain Duplicates (EAT-III)

This is new in version 2.0.

1. Basic Concept
This is a companion to protocol 3.4. The number of restaurants close to where someone lives or goes to school may be more important than the nearest one. After all in food, choices are often important. This measures the density of the comprehensive list of fast food restaurants in Protocol 3.3 adjusted for duplicates, that is where there are two or more restaurants of the same chain within the same buffer, only one is counted.

2. Basic Definition
Fast Food Restaurant Density = Total fast food restaurants per unit land area (excluding water) adjusted for chain duplicates.

3. Detailed Definition
Fast Food Restaurant Density = Total fast food restaurants per unit land area (excluding water) where fast food restaurants are defined in the following way and using Business Analyst:

2. Start with a list of all restaurants (from the previous protocol, and using NAICS codes)
4. Search for two kinds of restaurants: (a) ones with key words and (b) ones from a list of chains. The two studies had different emphases.
• The ECHO study (following on the IDEA approach) emphasized a comprehensive list of restaurants.
• The EAT-III study wanted to match particular types of restaurants. See protocol 3.3. for the exact lists.
Where there are two or more examples of the same chain, only one is counted.

4. Comments and Explanations
None.

5. GIS Approach
The protocol is similar to the Protocol 3.2, Density of Restaurants. However, only the fast food restaurants are used in this case and, in addition, only one example of each chain is counted. The area within which the density has to be calculated is demarcated, the number of fast food outlets in the area is counted and the number is divided by the area to get the density.

6. GIS Steps
Not provided.
4. FOOD STORES

Note: these protocols were developed by Ann Forsyth (definitions and concepts) and Nishi Mishra and David Van Riper (GIS steps).

Food stores come in many sizes and shapes. Typically larger stores have more variety and are more likely to contain fresh fruits and vegetables, although there are of course exceptions to this rule.

The studies that these protocols support asked specifically about several kinds of stores selling food including Supermarkets, convenience stores, gas stations, and hardware stores (selling drinks). They also ask about farm stands and farmers markets that are seasonal and difficult to capture in databases.

These measures include:
- All food stores--from pharmacies to gas stations
- All grocery stores, only omitting convenience stores
- Large supermarkets and super centers
- Convenience stores and gas stations

4.1 Distance to any Retail Food Outlet--All Stores Selling Food (not restaurants)

Note: Version 1.3 added an additional NAICS code. This was updated for version 2.0 but is not being used in EAT-III or ECHO.

1. Basic Concept

The idea of this measure is to estimate how close participants are to food stores of any type, including those in other businesses such as gas stations. This measure will look at the distance to the nearest food store using the old SIC code 54—all food stores with the following sub-types.

<table>
<thead>
<tr>
<th>1987SIC</th>
<th>1987 SIC Description</th>
<th>2002 NAICS</th>
<th>2002 NAICS US Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Food stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>Grocery stores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5411</td>
<td>Grocery Stores</td>
<td>445110</td>
<td>Supermarkets and Other Grocery (except Convenience) Stores (part)</td>
</tr>
<tr>
<td></td>
<td>Except convenience stores, freezer plans, and grocery stores with substantial general merchandise</td>
<td>445120</td>
<td>Convenience Stores</td>
</tr>
<tr>
<td></td>
<td>Convenience stores without gas</td>
<td>447110</td>
<td>Gasoline Stations with Convenience Stores (part)</td>
</tr>
<tr>
<td></td>
<td>Convenience store with gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grocery stores and supermarkets selling substantial amounts of nonfood items</td>
<td>452910</td>
<td>Warehouse Clubs and Supercenters (part)</td>
</tr>
<tr>
<td></td>
<td>Frozen food and freezer plan providers</td>
<td>454390</td>
<td>Other Direct Selling Establishments (part)</td>
</tr>
<tr>
<td>542</td>
<td>Meat and fish (seafood) markets, including freezer provisioners</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In addition we will used codes where appropriate including:

45291 Warehouse Clubs and Supercenters
45211 Department Stores (including discount and not),
44719 Other Gas Stations
And other food stores such as pharmacies etc. where the involve chains selling food. This is a very broad definition.

2. Basic Definition
Distance to any Retail Food Outlet (not restaurants) = The shortest network or straight line distance between home or school and the nearest retail food outlet.
3. Detailed Definition
Distance to any Retail Food Outlet (not restaurants) = The shortest network or straight line distance between home or school and the nearest retail food outlet defined with SIC/NAICS codes and using Dun and Bradstreet data

4. Comments and Explanations
This is similar to the protocol 3.1, distance to nearest restaurant, and is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. Though in this case, the nearest distance is calculated only for the Retail Food outlets and not restaurants.

See Protocol 3.1 for more explanation.

5. GIS Approach
First the Retail Food Outlets are extracted from the master data and then the nearest distance to these locations are calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox.

See Protocol 3.1 for more explanation.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Point Features (Restaurant layer) for finding the nearest distance
3. Point Features (School or Participant layer) to find the distance from
4. Network Analyst Extension for ArcGIS 9.3.1

I. Query and extract data for Retail Food Outlet according to specified NAICS codes from the Business Analyst InfoUSA data, if the restaurant layer is not already prepared
1. Start ArcMap
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "PrimaryNai" in the Attributes list and click on Unique values (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click "=" operator
 iv. Click or Type 445110
 v. Click or Type 445120
 vi. Repeat steps ii to v adding the values to 445110, 447110, 452910, 454390, 454390, 452910, 445299, 445291, 722213, 445210, 445299, 446191, 452190, 452111, 452112, 447190, 446110
 vii. The SELECT * FROM Business Analyst InfoUSA WHERE: should: look like
"PrimaryNai" = 445110 OR "PrimaryNai" = 445120 OR "PrimaryNai" = 447110 OR "PrimaryNai" = 452910 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 445299 OR "PrimaryNai" = 445291, 722213, 445210, 445299, 446191, 452190, 452111, 452112, 447190, 446110
"PrimaryNai" = 445220 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 311330 OR "PrimaryNai" = 311340 OR "PrimaryNai" = 445292 OR "PrimaryNai" = 445299 OR "PrimaryNai" = 311811 OR "PrimaryNai" = 445291 OR "PrimaryNai" = 722213 OR "PrimaryNai" = 445210 OR "PrimaryNai" = 445299 OR "PrimaryNai" = 446191 OR "PrimaryNai" = 452910 OR "PrimaryNai" = 452111 (If included) OR “PrimaryNai” = 447190 OR “PrimaryNai” = 446110 OR “PrimaryNai” = 452112

viii. Click Apply
 c. Right Click the Business Analyst InfoUS and Click Data and then Export data
 i. Choose Selected Features for Export
 ii. Choose this layer’s source data for Use the same coordinate system as:
 iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 iv. Click OK
 v. Click Yes to add the data to current data frame

II. Calculate the Network Distance to Nearest Retail Food Outlet:
 a. LEAN Protocol 2.6 to determine the network distance to the nearest Retail Food Outlet. The participant locations are the origins and the retail food outlet locations are the features of interest

 The length of the nearest distance segment from a participant’s location to the nearest retail food outlet is stored in the Total Length attribute.

 A. Straight line distance
 1. Open ArcToolbox, then click Analysis Tools
 2. Click on Proximity Tools
 3. Click on Near tool
 a. Navigate and Choose Participant Layer as the Input Features
 b. Navigate and Choose Retail Food Outlets layer as Near Features
 c. Click OK

 The straightline distance to nearest retail food outlet is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Retail Food Outlet.

4.2 Density of all Retail Food Outlets (not restaurants)

Note: This protocol was updated in Version 1.3 to add an additional NAICS code. This was updated for version 2.0 but is not being used in EAT-III or ECHO.

1. Basic Concept
This is the density version of protocol 4.1.

2. Basic Definition
Density of all Retail Food Outlets (not restaurants) = Total retail food outlets per unit land area (excluding water).

3. Detailed Definition
Distance to any Retail Food Outlet (not restaurants) = The shortest network or straight line distance between home or school and the nearest retail food outlet with retail food outlets defined using SIC/NAICS codes and using Dun and Bradstreet data (see protocols 4.1).
4. Comments and Explanations
The protocol is similar to the Protocol 3.2, Density of Restaurants. However, in this case the retail food outlets are used. The area within which the density has to be calculated is demarcated, the number of retail food outlets in the area are counted, and the number is divided by the area to get the density.

For a detailed explanation refer to Protocol 3.2.

5. GIS Approach
First the retail food outlets are extracted from the master data and then the buffer area is created using Network Analyst. Then, the water features are erased from the buffers using Erase tool, then the area of the buffer layer with erased water features is calculated. The number of retail food outlets is counted with a spatial join between the buffer layer and the retail food outlet location layer. The number of retail food outlet locations are then divided by the area in hectares to get the density.

For a detailed explanation refer to GIS Approach in Protocol 3.2.

6. GIS Steps
Requirements:
1. Retail Food Outlets layer (Point)
2. Participant Layer (Point)
3. Water feature layer (Polygon)
4. Roads Network dataset

1. Query and extract data for Restaurants according to specified NAICS codes from Dun & Bradstreet data, if the restaurant layer is not already prepared
 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Dun & Bradstreet data
 b. Click on the Dun & Bradstreet dataset and click Add to add the dataset to the Map
 3. Right Click the Dun & Bradstreet data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "PrimaryNai" in the Attributes list and click on Unique values (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click “=” operator
 iv. Click or Type 445110
 v. Click “OR” operator
 vi. Repeat steps ii to v adding the values to 445120, 447110, 452910, 454390, 445210, 445220, 454390, 454230, 454290, 311330, 311340, 445292, 445299, 311340, 445292, 445299, 311811, 445291, 722213, 445210, 445299, 446191, 452190, 452111, 452112, 452111, 452190, 446110
 vii. The SELECT * FROM Dun & Bradstreet WHERE: should: look like "PrimaryNai" = 445110 OR "PrimaryNai" = 445120 OR "PrimaryNai" = 447110 OR "PrimaryNai" = 445210 OR "PrimaryNai" = 445220 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 454230 OR "PrimaryNai" = 454290, 311330, 311340, 445292, 445299, 311811, 445291, 722213, 445210, 445299, 446191, 452190, 452111, 452112, 452111, 452190, 446110
viii. Right Click the Dun & Bradstreet data and Click Data and then Export data
ix. Choose Selected Features for Export
x. Choose this layer’s source data for Use the same coordinate system as:
xi. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
xii. Click OK
xiii. Click Yes to add the data to current data frame

II. Load the Participants buffers into ArcMap:
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffer and click Open to add them to the ArcMap document

III. Spatially join the retail food outlets to the Participant buffers
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
 c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Retail food outlets layer
 d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it
 e. For 3. The result of the join will be saved into a new layer, specify the output location and name
 f. Click OK to execute the spatial join

IV. Calculate the density of the retail food outlets in the buffer
 a. Right-click on the output from the previous step and select Open Attribute Table
 b. Click on the Options button and select Add Field…
 i. For the Name, type NFFCXXXX where XXXX is the buffer distance
 ii. Set the Type to Integer
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute
 c. Right-click on the NFFCXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [Count_
 ii. Click OK to execute the query
 d. Click on the Options button and select Add Field…
 i. For the Name, type NFFDXXXX where XXXX is the buffer distance
 ii. Set the Type to Double
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute
 e. Right-click on the NFFDXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [NFFCXXXX] / [Hectares]
 ii. Click OK to execute the query

The NFFCXXXX field contains the density of retail food outlets per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers.
4.3 Distance to Groceries, Supermarkets, or Super Centers (2010 EAT-III & ECHO)

Updated in version 2.0.

1. Basic Concept

The basic idea of this measure is to estimate access to a wide selection of food items. This is a broad category. While technically a supermarket (selling mainly food and other groceries) is different to a super center (a supermarket added on to a discount department store) they sell similar things. The TREC-IDEA and ECHO surveys asked about distance to supermarkets:

Supermarkets

- SS170 About how long would it take to get from your home to the nearest supermarket if you walked? (Adapted from NEWS B2 (14))

This measure uses SIC/NAICS codes --445110 for the list. In addition, major retailers like Super Target and Walmart Supercenter were included because they sell significant amounts of food. Again, because this is a large category, NAICS codes will capture the overall number. This protocol does not include membership sorts such as Sam’s Club and Costco but they are included in the companion measure about the density of nearby grocery stores etc.

It uses the following codes.

<table>
<thead>
<tr>
<th>2002 NAICS</th>
<th>1997 NAICS</th>
<th>1987 SIC</th>
<th>Corresponding Index Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>445110</td>
<td>445110</td>
<td>5411</td>
<td>Commissaries, primarily groceries</td>
</tr>
<tr>
<td>445110</td>
<td>445110</td>
<td>5411</td>
<td>Delicatessens primarily retailing a range of grocery items and meats</td>
</tr>
<tr>
<td>445110</td>
<td>445110</td>
<td>5411</td>
<td>Food (i.e., groceries) stores</td>
</tr>
<tr>
<td>445110</td>
<td>445110</td>
<td>5411</td>
<td>Grocery stores</td>
</tr>
<tr>
<td>445110</td>
<td>445110</td>
<td>5411</td>
<td>Supermarkets</td>
</tr>
</tbody>
</table>

Source: http://www.census.gov/epcd/naics02/def/NDEF445.HTM#N44511

2. Basic Definition

Distance to Grocery, Supermarket, or Super Center = The shortest network or straight line distance between home or school and the nearest grocery, supermarket, or super center.

3. Detailed Definition

Distance to Grocery, Supermarket, or Super Center = The shortest network or straight line distance between home or school and the nearest grocery, supermarket, or super center where these are identified using NAICS codes and web searches for Super Targets, Super Walmarts, and Super K-Marts. In TREC-IDEA this protocol used Dun and Bradstreet data; in EAT-III and ECHO, Business Analyst InfoUSA.
4. Comments and Explanations
This is similar to the protocol 3.1, distance to nearest restaurant, and is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. However in this case, the nearest distance is calculated only for the groceries, supermarkets, or super centers and not for restaurants.

See Protocol 3.1 for more explanation.

5. GIS Approach
First the Groceries, Supermarkets, or super centers are extracted from the master data and then the nearest distance to these locations are calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox.

See Protocol 3.1 for more explanation.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Food Outlets (Groceries, Supermarkets, or super centers) layer (Point Features) for finding the nearest distance to
3. Participants layer (Point Features) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.3.1

I. Query and extract data for Groceries, Supermarkets, or super centers according to specified NAICS codes from Business Analyst InfoUSA data, if the layer is not already prepared
1. Start ArcMap
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ▪ Click on “NAICS_EXT” in the Attributes list
 ▪ Click the “=” operator
 ▪ Type ‘44511001’
 ▪ Click the “OR” operator
 ▪ Click on “NAICS_EXT” in the Attributes list
 ▪ Click the “=” operator
 ▪ Type ‘44511002’
 ii. Click the “OR” operator again and then click on "CONAME" in the attributes list
 ▪ Click “=” operator
 ▪ Type ‘SUPER TARGET’
 ▪ Click “OR” operator
 ▪ Repeat above steps adding the values to SUPERTARGET, WALMART, SUPERCENTER,
 iii. The SELECT * FROM XXXX WHERE: should: look like

iv. Click Apply

c. Right Click the Business Analyst InfoUSA data layer and Click Data and then Export data

i. Choose Selected Features for Export

ii. Choose this layer’s source data for Use the same coordinate system as:

iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class

iv. Click OK

v. Click Yes to add the data to current data frame

II. Calculate the Network and Straight line Distance to Nearest Grocery Store, Supermarket, or Super Center.

a. Use LEAN Protocol 2.6 to determine the network distance to the nearest Grocery Store, Supermarket, or Super Center. The participant locations are the origins and the restaurant locations are the features of interest

A. Network Distance

B. Straight line distance

1. Open ArcToolbox, then click Proximity Tools

2. Click on Near tool

 a. Navigate and Choose Participant Layer as the Input Features

 b. Navigate and Choose Food Outlets (Groceries, Supermarkets, or super centers) layer as Near Features

 c. Click OK

The straight line distance to nearest Food Outlets (Groceries, Supermarkets, or super centers) is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Food Outlets (Groceries, Supermarkets, or super centers).

4.4 Density of Groceries, Supermarkets, or Super Centers (2010 EAT-III & ECHO)

Note: The steps were updated in Version 1.3 to better measure super centers. They were updated again in version 2.0 to reflect new GIS tools.

1. Basic Concept

This is the density version of protocol 4.3.

2. Basic Definition

Density of Groceries, Supermarkets, or Super Centers = Total groceries, supermarkets, or super centers per unit land area (excluding water).

3. Detailed Definition

Density of Groceries, Supermarkets, or Super Centers = Total groceries, supermarkets, or super centers per unit land area (excluding water) these are identified using NAICS codes (445110) and In addition, major retailers like Super Target, Walmart Supercenter, Costco, and Sam’s Club were included because they sell significant amounts of food. (Super K-Marts would need to be added in
other regions.) In TREC-IDEA this used Dun and Bradstreet data; in EAT-III it is using Business Analyst.

4. Comments and Explanations
The protocol is similar to the Protocol 3.2, Density of Restaurants. However, in this case the groceries, supermarkets, or super centers are used. The area within which the density has to be calculated is demarcated, the number of groceries, supermarkets, or super centers in the area is counted, and the number is divided by the area to get the density.

For a detailed explanation refer to Protocol 3.2.

5. GIS Approach
First the Groceries, Supermarkets, or Super Centers are extracted from the master data and then the buffer area is created using Network Analyst. Then, the water features are erased from the buffers using Erase tool, then the area of the buffer layer with erased water features is calculated. The number of groceries, supermarkets, or super centers is counted with a spatial join between the buffer layer and the Groceries, Supermarkets, or super centers location layer. The number of groceries, supermarkets, or super centers locations is then divided by the area in hectares to get the density.

For a detailed explanation refer to GIS Approach in Protocol 3.2.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Groceries, Supermarkets, or super centers layer (Point Features) for finding the nearest distance to
3. Participants layer (Point Features) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.1 or ArcGIS 9.2

I. Query and extract data for Groceries, Supermarkets, or super centers according to specified NAICS codes from Dun & Bradstreet data, if the layer is not already prepared
 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
 3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "NAICS_EXT" in the Attributes list
 iii. Click "=" operator
 iv. Type ‘44511001’
 v. Click the “OR” operator
 vi. Click on “NAICS_EXT” in the Attributes list
 vii. Click the “=” operator
 viii. Type ‘44511002’
 x. Click the “OR” operator again and then click on “CONAME” in the attributes list
 xi. Click “=” operator
xii. Type ‘SUPER TARGET’

xiii. Click “OR” operator

xiv. Repeat above steps adding the values for SUPERTARGET, WALMART SUPERCENTER, SAM’S CLUB, and COSTCO

xv. The SELECT * FROM XXXX WHERE: should look like

 `NAICS_EXT' = '44511001' OR 'NAICS_EXT' = '44511002' OR 'NAICS_EXT' = '44511003' OR 'NAICS_EXT' = '44511004' OR 'NAICS_EXT' = '44511005' OR 'NAICS_EXT' = '44511006' OR 'NAICS_EXT' = '44511007' OR 'NAICS_EXT' = '44511008' OR 'CONAME' = 'SUPER TARGET' OR 'CONAME' = 'SUPERTARGET' OR 'CONAME' = 'WALMART SUPERCENTER' OR 'CONAME' = 'SAM’S CLUB’ OR 'CONAME' = 'COSTCO'

xvi. Click Apply

c. Right Click the Business Analyst InfoUSA data layer and Click Data and then Export data
 i. Choose Selected Features for Export
 ii. Choose this layer’s source data for Use the same coordinate system as:
 iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 iv. Click OK
 v. Click Yes to add the data to current data frame

II. Load the participant buffers into ArcMap
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffer and click Open to add them to the ArcMap document

III. Spatially join the Groceries, Supermarkets, or super centers layer to the Participant buffers
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
 c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Groceries, Supermarkets, or super centers layer
 d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it
 e. For 3. The result of the join will be saved into a new layer, specify the output location and name
 f. Click OK to execute the spatial join

IV. Calculate the density of the Groceries, Supermarkets, or super centers layer in the buffer
 a. Right-click on the output from the previous step and select Open Attribute Table
 b. Click on the Options button and select Add Field…
 i. For the Name, type NFFCXXXX where XXXX is the buffer distance
 ii. Set the Type to Integer
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute
 c. Right-click on the NFFCXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [Count_]
 ii. Click OK to execute the query
 d. Click on the Options button and select Add Field…
 i. For the Name, type NFFDXXXX where XXXX is the buffer distance
 ii. Set the Type to Double
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute
 e. Right-click on the NFFDXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [NFFCXXXX] / [Hectares]
 ii. Click OK to execute the query
4.5 Distance to Large Supermarkets or Super Center (2010 EAT-III)

Note: This was updated in Version 1.3 to explain finalized coding. Updated in version 2.0.

1. Basic Concept
The basic idea of this measure is to estimate access to high quality and inexpensive food and to test whether the largest stores are best.

Zenk et al. (2005) used store names rather than SIC codes for classification and omitted smaller chains: "Supermarkets were defined as super centers (e.g. Meijer, Super Kmart) and full-line grocery stores (e.g. Farmer Jack, Kroger) associated with a national or regional grocery chain, i.e. a chain with 11 or more retail stores” (p.).

There are two potential lists of chains. The web site www.supermarketnews.com has a national supermarket list. Wikipedia has a list that includes specialty and natural food chains, retail cooperatives, regional and local chains, national chains, Hispanic/Latino chains, discount chains, and Asian chains (See Appendix 4A). Most of these would be seen as supermarkets but only some were actually in Minnesota.

In TREC we examined the various data and decided to use Dun and Bradstreet industrial classifications to locate supermarkets (NAICS 445110) and to add Super Centers from lists on the web sites of major chains. In EAT-III we decided to use a list of chain names for major stores in the Twin Cities area. This does not include membership stores as households may not be members (such stores are included in “density” type measures). In a “distance to” measure one nearby store can make a great difference to the measure; in density measures this is not as significant.

2. Basic Definition
Distance to Supermarket or Super Center = The shortest network or straight line distance between home or school and the nearest supermarket or super center.

3. Detailed Definition
Distance to Supermarket or Super Center = The shortest network or straight line distance between home or school and the nearest supermarket or super center where supermarkets are defined using Business Analyst data the following list (based on the supermarket news list and local knowledge):

- Albertsons
- Byerly’s
- Cub Foods
- Kowalski’s
- Lunds Markets
- Rainbow Foods
- Walmart Supercenter
- Costco
4. Comments and Explanations
The GIS method to find the nearest large supermarket or supercenter is similar to the protocol 3.1, distance to nearest restaurant, and is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. Though in this case, the nearest distance is calculated only for the large supermarket or supercenter and not restaurants. The large supermarket and supercenter’s are selected on the basis of chain names. These supermarkets were selected because they sell food (fruits and vegetables etc) whereas their counterparts like Target or Walmart rarely have fresh food and would not be appropriate for the measures.

See Protocol 3.1 for more explanation on finding the nearest larger supermarket.

5. GIS Approach
First of all the large supermarkets or super centers are extracted from the master data and then the nearest distance to these locations are calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox. However, while extracting the large supermarket or supercenter’s from master data, the chain names are used.

See Protocol 3.1 for more explanation.

6. GIS Steps

Requirements:
1. Road Layer polyline
2. Point Features (Large Supermarkets or Supercenter layer) for finding the nearest distance to
3. Point Features (Participants layer) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.1 or ArcGIS 9.2

I. Query and extract data for Large Supermarkets or Supercenters according to specified names of supermarkets from Business Analyst InfoUSA data, if the layer is not already prepared
 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
 3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ▪ Click on "CONAME" in the Attributes
 ▪ Click “=” operator
 ▪ Type ‘BYERLY’S’
 ▪ Click “OR” operator
 ▪ Repeat above steps adding the values to ALBERTSON’S, CUB FOODS, RAINBOW FOODS, LUNDS MARKETS, KOWALSKI’S, KOWALSKI’S MARKET, KOWALSKI’S MARKETS, KOWALSKI’S YOUR NEIGHBORHOOD,
ii. The `SELECT * FROM Business Analyst InfoUSA WHERE:

```
: should: look like

CONAME" = 'BYERLY''S' OR "CONAME" = 'ALBERTSON''S' OR "CONAME" = 'CUB FOODS' OR "CONAME" = 'RAINBOW FOODS' OR "CONAME" = 'LUNDS MARKETS' OR "CONAME" = 'KOWALSKI''S' OR "CONAME" = 'KOWALSKI''S MARKET' OR "CONAME" = 'KOWALSKI''S MARKETS' OR "CONAME" = 'KOWALSKI''S YOUR NEIGHBORHOOD' OR "CONAME" = 'KOWALSKI''S EDEN PRAIRIE' OR "CONAME" = 'SUPER TARGET' OR "CONAME" = 'BYERLY''S INC' OR "CONAME" = 'BYERLY''S GROCERY' OR "CONAME" = 'BYERLY''S FINE FOODS' OR "CONAME" = 'BYERLY''S ROSEVILLE' OR "CONAME" = 'COSTCO' OR "CONAME" = 'SAM''S CLUB' OR "CONAME" = 'WALMART SUPERCENTER'
```

iii. Click Apply

c. Right Click the Business Analyst InfoUSA data and Click Data and then Export data

i. Choose Selected Features for Export

ii. Choose this layer’s source data for Use the same coordinate system as:

iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class

iv. Click OK

v. Click Yes to add the data to current data frame

II. Calculate the Network and Straight line Distance to Nearest Large Supermarket or Super Center: Use LEAN Protocol 2.6 to determine the network distance to the nearest large supermarket or super center. The participant locations are the origins and the largest supermarkets or super centers locations are the features of interest

A. Straight line distance

1. Open ArcToolbox, then click Proximity Tools

2. Click on Near tool

 a. Navigate and Choose Participant Layer as the Input Features

 b. Navigate and Choose Large Supermarkets or Supercenters layer as Near Features

 c. Click OK

The straightline distance to nearest supermarket or super center is stored in the attribute table under field name `Near_Dist`. The `Near_FID` field has the FID of the Nearest Large Supermarkets or Supercenters.

4.6 Density of Large Supermarkets or Super Centers (2010 EAT-III)

Updated in version 2.0.

1. Basic Concept

 This is the density version of protocol 4.5.

2. Basic Definition

 Density of Supermarkets or Super Centers = Total supermarkets or super centers per unit land area (excluding water).

3. Detailed Definition

 Density of Supermarkets or Super Centers = Total supermarkets or super centers per unit land area (excluding water) where supermarkets are defined using Business Analyst data and the following list (based on the supermarket news list and local knowledge):
4. Comments and Explanations
The protocol is similar to the Protocol 3.2, Density of Restaurants. However, in this case the large supermarkets and supercenters density is calculated. The area within which the density has to be calculated is demarcated, the number of large supermarkets and supercenters in the area are counted, and the number is divided by the area to get the density. The large supermarkets and supercenter’s are selected on basis of chain names

For a detailed explanation for calculating the density refer to Protocol 3.2.
For a detailed explanation about selecting the large supermarkets and supercenters refer to Protocol 4.5.

5. GIS Approach
First the large supermarkets and supercenters are extracted from the master data and then the buffer area is created using Network Analyst. Then, the water features are erased from the buffers using Erase tool, then the area of the buffer layer with erased water features is calculated. The number of large supermarkets and supercenters is counted with a spatial join between the buffer layer and the retail food outlet location layer. The number of large supermarkets and supercenters locations is then divided by the area in hectares to get the density.

For a detailed explanation refer to GIS Approach in Protocol 3.2.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Large Supermarkets or Supercenters layer (Point Features) for finding the nearest distance to
3. Participants layer (Point Features) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.3.1

I. Query and extract data for Large Supermarkets or Supercenters according to specified names of supermarkets, from Business Analyst InfoUSA data, if the layer is not already prepared

1. Start ArcMap
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
b. Click **Select by Attributes**

i. **Select Create a new selection as Method**
 - Click on "CONAME" in the Attributes list
 - Click "=" operator
 - Type ‘BYERLY’S’
 - Click “OR” operator
 - Repeat above steps adding the values to ALBERTSON’S, CUB FOODS, RAINBOW FOODS, LUNDS MARKETS, KOWALSKI’S, KOWALSKI’S MARKET, KOWALSKI’S MARKETS, KOWALSKI’S YOUR NEIGHBORHOOD, KOWALSKI’S MARKET EDEN PRARIE, SUPERTARGET, SUPER TARGET, BYERLY’S INC, BYERLY’S GROCERY, BYERLY’S FINE FOODS, BYERLY’S ROSEVILLE, COSTCO, SAM’S CLUB

ii. The **SELECT * FROM Business Analyst InfoUSA WHERE: should: look like** "CONAME" = ‘BYERLY’S’ OR "CONAME" = ‘ALBERTSON’S’ OR "CONAME" = ‘CUB FOODS’ OR "CONAME" = ‘RAINBOW FOODS’ OR "CONAME" = ‘LUNDS MARKETS’ OR "CONAME" = ‘KOWALSKI’S’ OR "CONAME" = ‘KOWALSKI’S MARKET’ OR “CONAME” = ‘KOWALSKI’S MARKETS’ OR “CONAME” = ‘KOWALSKI’S YOUR NEIGHBORHOOD’ OR “CONAME” = ‘KOWALSKI’S EDEN PRAIRIE’ OR “CONAME” = ‘SUPERTARGET’ OR “CONAME” = ‘SUPER TARGET’ OR “CONAME” = ‘BYERLY’S INC’ OR “CONAME” = ‘BYERLY’S GROCERY’ OR “CONAME” = ‘BYERLY’S FINE FOODS’ OR “CONAME” = ‘BYERLY’S ROSEVILLE’ OR “CONAME” = ‘COSTCO’ OR “CONAME” = ‘SAM’S CLUB’ OR “CONAME” = ‘WALMART SUPERCENTER’

iii. Click **Apply**

c. Right Click the **Business Analyst InfoUSA data** and Click **Data** and then **Export data**

i. Choose **Selected Features** for **Export**

ii. Choose this layer’s **source data** for Use the same coordinate system as:

iii. Navigate to appropriate folder and give the output file an appropriate name for **Output shapefile or feature class**

iv. Click **OK**

v. Click **Yes** to add the data to current data frame

II. **Load the participants buffers into ArcMap**

2.3 Click the Add Data button on the Standard Toolbar

2.4 Navigate to the location of the Participant buffers

2.5 Select the buffer and click Open to add them to the ArcMap document

III. **Spatially join the Large Supermarkets or Supercenters layer to the Participant buffers**

3.3 Right-click the Participant buffer layer and select Joins and Relates and then choose Join…

3.4 For What do you want to join to this layer?, select “Join data from another layer based on spatial location”

3.5 For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Large Supermarkets or Supercenters layer

3.6 For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it”

3.7 For 3. The result of the join will be saved into a new layer, specify the output location and name

3.8 Click OK to execute the spatial join

IV. **Calculate the density of the Large Supermarkets or Supercenters in the buffer**

4.3 Right-click on the output from the previous step and select Open Attribute Table

4.4 Click on the Options button and select Add Field…

4.4.1 For the Name, type NFFCXXXX where XXXX is the buffer distance

4.4.2 Set the Type to Integer

4.4.3 Accept the defaults for Scale and Precision

4.4.4 Click OK to add the attribute

4.5 Right-click on the NFFCXXXX attribute and select Field Calculator…

4.5.1 In the field calculator, construct the following query: [Count_]
4.5.2 Click OK to execute the query
4.6 Click on the Options button and select Add Field…
4.6.1 For the Name, type NFFDXXXX where XXXX is the buffer distance
4.6.2 Set the Type to Double
4.6.3 Accept the defaults for Scale and Precision
4.6.4 Click OK to add the attribute
4.7 Right-click on the NFFDXXXX attribute and select Field Calculator…
4.7.1 In the field calculator, construct the following query: [NFFCXXXX] / [Hectares]
4.7.2 Click OK to execute the query

The NFFCXXXX field contains the density of Large Supermarkets or Supercenters per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers

4.7 Type of Nearest Retail Food Outlet

Note: Updated in Version 1.3.

1. Basic Concept
The closest store is likely to be the one frequented.

This will build on Moore and Diez Roux (2006) who used InfoUSA to classify stores into "the following categories using the SIC codes:

- grocery stores and supermarkets (541101, 541104-541106);
- convenience stores (541102, 541103);
- meat and fish markets (5421, 549907, 549911);
- fruit and vegetable markets (543101-543103, 549933);
- bakeries (541);
- natural food stores (549901, 549909, 549935);
- specialty food stores (549910, 549912, 549914, 549916-549921, 559923, 549926-549928, 549930, 549937);
- and liquor stores (5912)." (p 326, bulleting added).

However, as we have found much misclassification in this database in the Twin Cities, we will instead use Dun and Bradstreet and will use NAICS as appropriate to attempt to classify these better. While some may seem odd-such as confectionary manufacturing from purchased chocolate—that category includes handmade chocolate stores. These include:

- 311330 Confectionery Manufacturing from Purchased Chocolate
- 311340 Nonchocolate Confectionery Manufacturing
- 311811 Retail Bakeries
- 445120 Convenience Stores
- 445210 Meat Markets
- 445220 Fish and Seafood Markets
- 445230 Fruit and Vegetable Markets
- 445291 Baked Goods Stores
- 445292 Confectionery and Nut Stores
- 445299 All Other Specialty Food Stores
• 446110 Pharmacies and Drug Stores
• 446191 Food (Health) Supplement Stores,
• 447110 Gasoline Stations with Convenience Stores
• 447190 Other Gasoline Stations (our local knowledge indicated most of these sold food)
• 452111 Department Stores (except Discount Department Stores)
• 452112 Discount Department Stores
• 452190 [typo in steps, to fix]
• 452910 Warehouse Clubs and Supercenters
• 454390 Other Direct Selling Establishments
• 722213 Snack and Nonalcoholic Beverage Bars

2. Basic Definition
Type of Nearest Retail Food Outlet = industrial code of the type of food store that is the shortest network or straight line distance between home or school.

3. Detailed Definition
Type of Nearest Retail Food Outlet = industrial code of the type of food store that is the shortest network or straight line distance between home or school where type of store is identified using NAICS codes above.

4. Comments and Explanations
The methodology to find the nearest retail food outlet is similar to the protocol 3.1, distance to nearest restaurant, and is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. Though in this case, the type of nearest retail food outlet is the output. In case of Network distance, the type of nearest food outlet is extracted by joining the facility layer (the sub layer of closest facility) with the retail food outlet layer and then joining this combined data with the route layer. This ensures that all the routes carry over the original retail food outlet data.

See Protocol 3.1 for more explanation of finding the closest facility.

5. GIS Approach
First the Retail Food Outlets are extracted from the master data and then the nearest distance to these locations are calculated. The basic idea to find the nearest retail food outlet is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox. In case of Network distance, the type of nearest food outlet is extracted by joining the attributes of facility layer (the sub layer of closest facility) using the Name field, with the retail food outlet layer, using the retail food outlet Id and exporting this data as new layer. Then this exported data is joined with the route layer using facility Id and object Id of exported data. This ensures that all the routes carry over the original retail food outlet data.

See Protocol 3.1 for more explanation.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Point Features (Retail Food Outlets layer) for finding the nearest distance to
3. Point Features (Participants layer) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.1 or ArcGIS 9.2

I. Query and extract data for Restaurants according to specified NAICS codes from Dun & Bradstreet data, if the restaurant layer is not already prepared

1. Start ArcMap
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Dun & Bradstreet data
 b. Click on the Dun & Bradstreet dataset and click Add to add the dataset to the Map
3. Right Click the Dun & Bradstreet data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "PrimaryNai" in the Attributes list and click on Unique values (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click "=" operator
 iv. Click or Type 445110
 v. Click "OR" operator
 vi. Repeat steps ii to v adding the values to 445120, 447110, 452910, 454390, 445210, 445220, 445230, 454390, 311330, 311340, 445292, 445299, 311811, 445291, 722213, 445210, 445299, 446191, 452190, 452111, 452112, 447190, 446110
 vii. The SELECT * FROM Dun & Bradstreet WHERE: should look like
 "PrimaryNai" = 445110 OR "PrimaryNai" = 445120 OR "PrimaryNai" = 447110 OR "PrimaryNai" = 452910 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 445210 OR "PrimaryNai" = 445220 OR "PrimaryNai" = 445230 OR "PrimaryNai" = 454390 OR "PrimaryNai" = 311330 OR "PrimaryNai" = 311340 OR "PrimaryNai" = 445292 OR "PrimaryNai" = 445299 OR "PrimaryNai" = 311811 OR "PrimaryNai" = 445291 OR "PrimaryNai" = 722213 OR "PrimaryNai" = 445210 OR "PrimaryNai" = 445299 OR "PrimaryNai" = 446191 OR "PrimaryNai" = 452910 OR "PrimaryNai" = 452111 (if included) OR "PrimaryNai" = 447190 OR “PrimaryNai” = 446110 OR “PrimaryNai” = 452112
 viii. Click Apply
 c. Right Click the Dun & Bradstreet data and Click Data and then Export data
 ix. Choose Selected Features for Export
 x. Choose this layer’s source data for Use the same coordinate system as:
 xi. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 xii. Click OK
 xiii. Click Yes to add the data to current data frame

II. Calculate the Network and Straight line Distance to Nearest Restaurant
A. Network Distance
 1. Start ArcMap
 2. On the Main Menu click Tools and Click on Extensions.
 a. Check Network Analyst Extension.
 b. Click Close
 3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location, created earlier
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap.
 c. Click Yes to add all the feature classes, that participate in the network, to the map.
 4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Point Layers to be used for analysis, in this case Participant location and Restaurant Locations
b. Click on the **Point Layers** and click **Add** to add it to ArcMap.

5. Assign Id’s to the retail food outlets and the participant’s if not done already. In the Table of Contents Right Click the **Point Layer** and click on **Open Attribute Table**

a. In the **Attribute Table**
 i. Click **Options**
 ii. Click **Add Field**
 iii. Add the **RetailId_T/Part_Id_T** as Text
 - Type **RetailId_T/Part_Id_T** in the **Name** field
 - Select **Text** (50) as **Type**
 - Accept default for **Length**
 - Click **OK**
 iv. Add the **Retail_Id/Part_Id** as Integer
 - Type **Retail_Id/Part_Id** in the **Name** field
 - Select **Short Integer** as **Type**
 - Accept default (0) for **Precision**
 - Click **OK**
 v. Enter the assigned Id for the participants and schools

6. On the main menu click **View**

a. Click on **Toolbars**

b. In the side menu click **Network Analyst** to add the Network Analyst toolbar to ArcMap

7. Click **Network Analysis Toolbar**

a. Click **Network Analyst Window** button to add the Network Analyst Window to the map

8. On the **Network Analyst Toolbar** Click **Network Analyst Dropdown Menu**

a. Click **New Closest Facility**

b. The Table of contents and the Network Analyst Window contains empty list of **Facilities, Incidents, Routes, and Barriers** Categories.

9. On the **Network Analyst Window** right Click **Facilities** and Click **Load Locations**

a. In **Load Locations Window**
 i. Click **Browse** and navigate to the **Retail Food Outlets Locations, Point feature layer**
 ii. Click on the **Retail Food Outlets Locations layer** and click **Add**
 iii. Choose the **Retail Food Outlets Id** as the **Sort** field
 iv. Choose the **Retail Food Outlets Id Text** as the **Name** field. Accept the default for other **Location Analysis Properties**
 v. Use **50 Meters** for **Location Position, Use Geometry** (increase the search tolerance if many locations are not located)
 vi. Click **OK**

10. On the **Network Analyst Window** right click **Incidents** and Click **Load Locations**

a. In **Load Locations Window**
 i. Click **Browse** and navigate to the **Participant Locations, Point feature layer**
 ii. Click on the **Participant Locations layer** and click **Add**
 iii. Choose the **Participant ID/School Id** as the **Sort** field
 iv. Choose the **Participant ID/School Id Text** as the **Name** field. Accept the default for other **Location Analysis Properties**
 v. Accept the default **Location Position**
 vi. Click **OK**

11. To set the properties to be used in the Analysis, In the Table of Contents Right Click the **Closest Facility Layer** and Click **Properties**
a. Click on Analysis Settings Tab
 i. Choose Length (Meters) for Impedance
 ii. Choose None for Default Cutoff Values
 iii. Choose Facilities To Find as 1
 iv. Choose Travel From as Incident To Facility
 v. Choose Everywhere for Allow U-Turns
 vi. Choose Output Shape Type as True Shape
 vii. Check the box to Ignore Invalid Locations
b. Click Ok

12. On the Network Analyst Toolbar, Click Solve Button 🔄
13. Joining attributes with Source Point Layer to carry over the data
 a. Right Click the Facilities layer
 b. Click Joins and Relates and then Join
 i. Choose Name as the Field to base the join on
 ii. Choose the Retail Food Outlets Layer as the Table to Join to this layer
 iii. Choose the Retail Food Outlets ID Text as the field in the table to base the join on
 iv. Click Ok
 c. Right Click the Facilities Layer
 d. Click on Data and then Export Data
 i. Choose this layer’s source data for the coordinate system
 e. Specify the Output location
 f. Right Click the Routes Layer
 g. Click Joins and Relates and then Join
 v. Choose Facility Id as the Field to base the join on
 vi. Choose the Data join layer exported in above step as the Table to Join to this layer
 vii. Choose the Object ID as the field in the table to base the join on
 viii. Click Ok
 h. Right Click the Routes Layer
 i. Click on Data and then Export Data
 i. Choose this layer’s source data for the coordinate system
 ii. Specify the Output location

In ArcGIS 9.2 the name field of routes contains the Incident Id (Participant Id) to Facility ID (Retail Food Outlets ID) in the format Incident Id - Facility ID. It indicates the route connects a participant to the corresponding retail food outlets. To obtain the Type of Retail Food Outlet, the NAICS code corresponding to each facility can be found out from the attribute table.

B. Straight line distance
 1. Open ArcToolbox, then click Proximity Tools
 2. Click on Near tool
 a. Navigate and Choose Participant Layer as the Input Features
 b. Navigate and Choose Restaurant layer as Near Features
 c. Check Location and angle, if need to calculate them
 d. Click OK

The straightline distance to nearest restaurant is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Restaurant. To obtain the Type of Retail Food Outlet, the NAICS code corresponding to each facility can be found out from the attribute table.

4.8 Distance to Nearest Convenience Store Including Gas Stations (2010 EAT-III & ECHO)

Note: NAICS codes were slightly updated in Version 1.3. Updated in version 2.0.
1. Basic Concept
The TREC-IDEA study had several questions about convenience stores:

Convenience Stores
- SS164 During a normal school week, how many days per week do you get lunch off campus at a convenience store? (TACOS Student Survey (11))
- SS169 About how long would it take to get from your home to the nearest convenience store if you walked? (Adapted from NEWS B1 (14))
- Ps 65/66 In the past month, how many times did you buy food/sweetened beverage at a convenience store, gas station, hardware store, or a vending machine?

The TREC-IDEA study has one question about gas stations:
- Ps 65/66 In the past month, how many times did you buy food/sweetened beverage at a convenience store, gas station, hardware store, or a vending machine?

We use NAICS codes 44512 (convenience stores), 44711 Gasoline Stations with Convenience Stores, and 44719 Other Gasoline Stations.

2. Basic Definition
Distance to nearest convenience store = the shortest network or straight line distance between home or school and the nearest convenience store.

3. Detailed Definition
Distance to nearest convenience store = The shortest network or straight line distance between home or school and the nearest convenience store defined with NAICS codes (44512, 44711, 44719) and Business Analyst data.

4. Comments and Explanations
This is similar to the protocol 3.1, distance to nearest restaurant, and is done by using the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1. Though in this case, the nearest distance is calculated only for the Convenience Stores (including Gas Stations) and not for restaurants.

See Protocol 3.1 for more explanation.

5. GIS Approach
First the Convenience Stores (including Gas Stations) are extracted from the master data and then the nearest distance to these locations are calculated. The basic idea is similar to the protocol 3.1, distance to nearest restaurant. Nearest network distance between a set of origin locations and destination locations is calculated using Network Analyst and straight line distance is calculated using Near tool in ArcToolbox.

See Protocol 3.1 for more explanation.

6. GIS Steps
Requirements:
1. Road Layer polyline
2. Convenience Stores (including Gas Stations) layer (Point Features) for finding the nearest distance to
3. Participants layer (Point Features) for finding the nearest distance from
4. Network Analyst Extension for ArcGIS 9.3.1

I. Query and extract data for Convenience Stores (including Gas Stations) according to specified NAICS codes from Business Analyst InfoUSA data, if the layer is not already prepared

 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst InfoUSA data
 b. Click on the Business Analyst InfoUSA dataset and click Add to add the dataset to the Map
 3. Right Click the Business Analyst InfoUSA data and Click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on "NAICS_EXT" in the Attributes list and click on Unique values (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click "=" operator
 iv. Click or Type '44512001'
 v. Click “OR” operator
 vi. Click or Type '44719001'
 viii. The SELECT * FROM Business Analyst InfoUSA WHERE: should look like
 "NAICS_EXT" = '44512001' OR "NAICS_EXT" = '44719001' OR "NAICS_EXT" = '44719001' OR "NAICS_EXT" = '44719003' OR "NAICS_EXT" = '44719004' OR "NAICS_EXT" = '44719005' OR "NAICS_EXT" = '44719006' OR "NAICS_EXT" = '44719007'
 ix. Click Apply
 c. Right Click the Business Analyst InfoUSA data layer and Click Data and then Export data
 i. Choose Selected Features for Export
 ii. Choose this layer’s source data for Use the same coordinate system as:
 iii. Navigate to appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 iv. Click OK
 v. Click Yes to add the data to current data frame

II. Calculate the Network and Straight line Distance to the Nearest Convenience Store including Gas Stations
A. Network Distance: Use LEAN Protocol 2.6 to determine the network distance to the nearest convenience store including gas stations. The participant locations are the origins and the convenience stores including gas stations are the features of interest

The length of the nearest distance segment from a participant’s location to the nearest Convenience Stores (including Gas Stations) is stored in the Total Length attribute.

B. Straight line distance
 1. Open ArcToolbox, then click Proximity Tools
 2. Click on Near tool
 a. Navigate and Choose Participant Layer as the Input Features
 b. Navigate and Choose Convenience Stores (including Gas Stations) layer as Near Features
 c. Click OK

The straight line distance to nearest Convenience Stores (including Gas Stations) is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Convenience Stores (including Gas Stations).

Note: NAICS codes were slightly updated in Version 1.3. Updated in version 2.0.

1. Basic Concept
 This is the density version of protocol 4.6.

2. Basic Definition
 Density of all Convenience Stores = Total convenience stores per unit land area (excluding water).

3. Detailed Definition
 Density of all Convenience Stores = Total convenience stores per unit land area (excluding water) with convenience stores defined using NAICS codes (44512, 44711, 44719) and Business Analyst data.

4. Comments and Explanations
 The protocol is similar to the Protocol 3.2, Density of Restaurants. However, in this case the Convenience Stores (including Gas Stations) are used. The area within which the density has to be calculated is demarcated, the number of Convenience Stores (including Gas Stations) in the area is counted, and the number is divided by the area to get the density.

 For a detailed explanation refer to Protocol 3.2.

5. GIS Approach
 First the Convenience Stores (including Gas Stations) are extracted from the master data and then the buffer area is created using Network Analyst. Then, the water features are erased from the buffers using Erase tool, then the area of the buffer layer with erased water features is calculated. The number of Convenience Stores (including Gas Stations) is counted with a spatial join between the buffer layer and the Convenience Stores (including Gas Stations) location layer. The number of Convenience Stores (including Gas Stations) locations is then divided by the area in hectares to get the density.

 For a detailed explanation refer to GIS Approach in Protocol 3.2.

6. GIS Steps
 Requirements:
 1. Road Layer polyline
 2. Convenience Stores (including Gas Stations) layer (Point Features) for finding the nearest distance to
 3. Participants layer (Point Features) for finding the nearest distance from
 4. Network Analyst Extension for ArcGIS 9.3.1

 I. Query and extract data for Convenience Stores (including Gas Stations) according to specified NAICS codes from Business Analyst InfoUSA data, if the layer is not already prepared
 1. Start ArcMap
 2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the InfoUSA Business Analyst data
b. Click on the **InfoUSA Business Analyst dataset** and click **Add** to add the dataset to the Map

3. **Right Click the InfoUSA Business Analyst data** and **Click Open Attribute Table**
 a. Click on **Options**
 b. Click **Select by Attributes**
 i. Select **Create a new selection** as **Method**
 ii. Click on "NAICS_EXT" in the Attributes list and click on **Unique values** (since this can take substantial time, instead of this consider typing the codes as mentioned below)
 iii. Click "=" operator
 iv. Click or Type '44512001'
 v. Click "OR" operator
 vi. Click or Type '44719001'
 vii. Repeat for '44719002', '44719003', '44719004', '44719005', '44719006', '44719007'
 viii. The SELECT * FROM Business Analyst InfoUSA WHERE: should: look like:
 "NAICS_EXT" = '44512001' OR "NAICS_EXT" = '44719001' OR "NAICS_EXT" = '44719001' OR "NAICS_EXT" = '44719003' OR "NAICS_EXT" = '44719004' OR "NAICS_EXT" = '44719005' OR "NAICS_EXT" = '44719006' OR "NAICS_EXT" = '44719007'
 ix. Click **Apply**
 c. **Right Click the Business Analyst InfoUSA data layer** and **Click Data** and then **Export data**
 i. Choose **Selected Features** for Export
 ii. Choose this layer’s source data for **Use the same coordinate system as:**
 iii. Navigate to appropriate folder and give the output file an appropriate name for **Output shapefile or feature class**
 iv. Click **OK**
 v. Click **Yes** to add the data to current data frame

II. **Load the Participant buffers into ArcMap**
 a. Click the Add Data button on the Standard Toolbar
 b. Navigate to the location of the Participant buffers
 c. Select the buffer and click Open to add them to the ArcMap document

III. **Spatially join the Convenience Stores (including Gas Stations) layer to the Participant buffers**
 a. Right-click the Participant buffer layer and select Joins and Relates and then choose Join…
 b. For What do you want to join to this layer?, select “Join data from another layer based on spatial location”
 c. For 1. Choose the layer to join to this layer, or load spatial data from disk, select the Convenience Stores (including Gas Stations) layer
 d. For 2. You are joining: Points to Polygons, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it
 e. For 3. The result of the join will be saved into a new layer, specify the output location and name
 f. Click OK to execute the spatial join

IV. **Calculate the density of the Convenience Stores (including Gas Stations) layer in the buffer**
 a. Right-click on the output from the previous step and select Open Attribute Table
 b. Click on the Options button and select Add Field…
 i. For the Name, type NFFCXXXX where XXXX is the buffer distance
 ii. Set the Type to Integer
 iii. Accept the defaults for Scale and Precision
 iv. Click OK to add the attribute
 c. Right-click on the NFFCXXXX attribute and select Field Calculator…
 i. In the field calculator, construct the following query: [Count_
 ii. Click OK to execute the query
 d. Click on the Options button and select Add Field…
 i. For the Name, type NFFDXXXX where XXXX is the buffer distance
 ii. Set the Type to Double
iii. Accept the defaults for Scale and Precision
iv. Click OK to add the attribute
e. Right-click on the NFFDXXXX attribute and select Field Calculator…
i. In the field calculator, construct the following query: [NFFCXXXX] / [Hectares]
ii. Click OK to execute the query

The NFFCXXXX field contains the density of Convenience Stores (including Gas Stations) per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers.

4.10 Distance to Farmers Market (2010 EAT-III)

Note. New in version 1.2. Updated in version 2.0.

1. Basic Concept
Farmers markets provide access to fresh local produce during the growing season. They are much promoted as providing a healthy option but do they make a real difference?

2. Basic Definition
Straight line or street network distance to the nearest farmers market.

3. Detailed Definition
Straight line or street network distance to the nearest farmers market as specified in the local web listing of farmers markets including those opening between twice a week and once a month.

4. Comments and Explanations
For the TREC study the farmer’s markets in the Twin Cities were listed on the Minneapolis Star Tribune’s website [http://www.startribune.com/438/story/1187326.html]. By 2010 the markets were listed at [http://www3.mda.state.mn.us/mngrown/searchresults.aspx?location=&products=1]. The addresses for every market were extracted from the website and geocoded using ArcGIS 9.3.1.

5. GIS Approach
The GIS approach is to use the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1 to find the closest farmer’s market to a participant’s home. The point layer containing the farmer’s markets are the “facilities” in Network Analyst, and the participant locations are the “incidents” in Network Analyst. A street network is required for calculating the distance between farmer’s markets and participant locations.

In the Network Analyst Extension, specify the “origins” and the “destinations” and solve for the OD Cost Matrix.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
Requirements:
3. Road Network dataset
4. Participants’ Locations Point Feature Layer for incidents (origins)
5. Farmer’s Market Locations Point Feature Layer for facilities (destinations)
6. Network Analyst Extension for ArcGIS 9.3.1
Calculate the Network Distance to the nearest farmer’s market
Use LEAN Protocol 2.6 to determine the network distance to the nearest farmer’s market. The participant locations are the XXX and the farmer’s market are the features of interest.

Calculate the straight-line distance to the nearest farmer’s market

A. Straight line distance
 a. Open ArcToolbox, then click Proximity Tools
 b. Click on the Near tool
 i. Navigate and Choose the Participant Layer as the Input Features
 ii. Navigate and Choose the Farmer’s Markets layer as Near Features
 iii. Click OK.

The straight line distance to the nearest Farmer’s Markets is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Farmer’s Market.

Join the Participant Location layer to the Farmer’s Market layer using the NEAR_FID attribute.
 1. Right-click on the participant location layer and select Joins and Relates -> Join…
 2. Choose NEAR_FID as the field to base the join on.
 3. Choose the Farmer’s Market layer as the Table to Join to this layer.
 4. Choose the FID attribute as the field in the table to base the join on.
 5. Click OK. The Farmer’s Market attributes will be joined to the Participant locations.
 6. Right-click on the Participant Locations layer and select Data-> Export Data.
 a. Choose this layer’s source data for the coordinate system.
 b. Specify the Output Location.
 c. Click OK.

A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest farmer’s market to each participant location.

4.11 Distance to Alcohol Sales Places
Note. New in version 1.2.

1. Basic Concept
While the focus of these protocols is on youth, alcohol is still an issue. This protocol examines both bars and stores selling alcohol. It omits restaurants as these require significant additional purchases.

2. Basic Definition
Distance to alcohol sales = Straight line or street network distance to the nearest store or bar selling alcohol.

3. Detailed Definition
Distance to alcohol sales = Straight line or street network distance to the nearest store, bar, or restaurant selling alcohol using NAICS codes 7224: Drinking Places (Alcoholic Beverages) and 4453 Beer, Wine, and Liquor Stores.

4. Comments and Explanations
None.
5. GIS Approach
The GIS approach is to use the OD Cost Matrix option in Network Analyst Extension of ArcGIS 9.3.1 to find the closest Alcohol Sales Place to a participant’s home. The point layer containing the alcohol sales places are the “facilities”, and the participant locations are the “incidents” in Network Analyst. A street network is required for calculating the distance between alcohol sales places and participant locations.

In the Network Analyst Extension, specify the “facilities” and the “incidents” and solve for the closest facility to each incident. Attach the distance to the closest facility to each incident.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
The following procedures were completed in ArcMap (ArcInfo) 9.2.

To follow this protocol you will need:
1. Road Network dataset
2. Alcohol Sales Places point feature layer for facilities (destinations)
3. Participants’ Locations for incidents (origins)
4. Network Analyst Extension for ArcGIS 9.2

Calculate the Network Distance to the nearest alcohol sales place
1. Start ArcMap.
2. On the Main Menu, click Tools and click on Extensions
 a. Check Network Analyst Extension
 b. Click Close
3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap
 c. Click Yes to add all the feature classes that participate in the network to the map
4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Points Layers to be used for the analysis, in this case the Participant locations and the Alcohol Sales places
 b. Select the Point Layers and click Add to add them to ArcMap
5. If the Alcohol Sales IDs and the Participant IDs are already assigned, go to the next steps. Otherwise, in the Table of Contents, right-click on the Participant locations point layer and select Open Attribute Table
 a. In the Attribute Table
 i. Click Options
 ii. Click Add Field...
 iii. Add Par_ID_T as Text
 1. Type Par_ID_T in the Name field
 2. Select Text as Type
 3. Set the Length to 20
 4. Click OK
 iv. Click Options and select Add Field...
 v. Add Par_ID as Integer
 1. Type Par_ID in the Name field
 2. Select Short Integer as Type
 3. Accept default (0) for Precision
 4. Click OK
 vi. Right-click on the Par_ID field and select Field Calculator...
 1. Set the Par_ID equal to [FID] + 1
2. Click OK

vii. Right-click on the Par_ID_T field and select Field Calculator…
 1. Set the Par_ID_T equal to Par_ID
 2. Click OK

b. Right-click on the Alcohol Sales point layer and select Open Attribute Table
 i. Click the Options button and select Add Field
 ii. Add Alc_ID_T as Text
 1. Type Alc_ID_T in the Name field
 2. Select Text as Type
 3. Set the Length to 20
 4. Click OK
 iii. Click the Options button and select Add Field
 iv. Add Alc_ID as Integer
 1. Type Alc_ID in the Name field
 2. Select Short Integer as Type
 3. Accept default (0) for Precision
 4. Click OK
 v. Right-click on the Alc_ID field and select Field Calculator…
 1. Set the Alc_ID equal to [FID] + 1
 2. Click OK
 vi. Right-click on the Alc_ID_T field and select Field Calculator…
 1. Set the Alc_ID_T equal to Alc_ID
 2. Click OK

6. Load the Network Analyst toolbar
 a. On the Main Menu, click on View
 b. Click on Toolbars
 c. In the side menu, click Network Analyst to add the Network Analyst toolbar to ArcMap

7. Load the Network Analyst Window
 a. Click on the Show/Hide Network Analyst Window to open the window

8. Create a New Closest Facility
 a. Click on the Network Analyst button on the Network Analyst toolbar
 b. Select New Closest Facility from the dropdown menu
 c. The Table of Contents and the Network Analyst Window will now contain a Closest Facility layer, which contains Facilities, Incidents, Barriers, and Routes categories

9. Load the Alcohol Places in the Facilities category in Network Analyst
 a. In the Network Analyst window, right-click Facilities and click Load Locations. This will open the Load Locations Window
 b. In the Load Locations Window
 i. Select the point layer containing the Facilities locations from the dropdown box next to Load From. If the required point layer is not in the dropdown box, click on the Browse for Point Features to Load icon and navigate to the point layer.
 ii. Choose the Alc_ID as the Sort field
 iii. Choose the Alc_ID_T for the Name property under Locational Analysis properties.
 iv. Accept the defaults for the other Locational Analysis properties.
 v. Choose a suitable Search Tolerance for the Location Position. If features cannot be located on the network dataset, this tolerance may need to be increased.
 vi. Click OK
 c. To verify all Alcohol Places were located on the network dataset, do one of the following. If any feature has a status of Not Located, the search tolerance in 9.b.v may need to be increased or the feature reviewed for its correct location.
 i. For small datasets, scroll through the resulting lists of Facilities in the Network Analyst Window, looking for features with RED question marks.
 ii. For large datasets, it may be easier to right-click on the Facilities in the Network Analyst Window, select Open Attribute Table and sort descending on the STATUS column. The Not Located features should be sorted to the top.
10. **Load the Participant locations into the Incidents category in Network Analyst**
 a. In the Network Analyst window, right-click **Incidents** and click **Load Locations**. This will open the Load Locations Window.
 b. In the Load Locations Window
 i. Select the point layer containing the **Participant locations** from the dropdown box next to Load From. If the required point layer is not in the dropdown box, click on the **Browse for Point Features to Load** icon and navigate to the point layer.
 ii. Choose the **Par_ID** as the **Sort** field.
 iii. Choose the **Par_ID_T** for the **Name** property under **Locational Analysis** properties.
 iv. Accept the defaults for the other **Locational Analysis** properties.
 v. Choose a suitable **Search Tolerance** for the **Location Position**. If features cannot be located on the network dataset, this tolerance may need to be increased.
 vi. Click **OK**.
 c. To verify all Participant locations were located on the network dataset, do one of the following. If any feature has a status of **Not Located**, the search tolerance in 10.b.v may need to be increased or the feature reviewed for correct location.
 i. For small datasets, scroll through the resulting lists of **Incidents** in the Network Analyst Window, looking for features with RED question marks.
 ii. For large datasets, it may be easier to right-click on the **Incidents** in the Network Analyst Window, select **Open Attribute Table** and sort descending on the **STATUS** column. The **Not Located** features should sort to the top.

11. **Set the properties for the analysis**
 a. In the Table of Contents, right-click **Closest Facility** and click **Properties**. This will open the Closest Facility properties dialog box.
 b. Click on the **Analysis Settings Tab**
 i. Choose **length (meters)** for Impedence.
 ii. Choose **None** for Default Cutoff Values.
 iii. Set **Facilities to Find** to 1.
 iv. Set the **Travel From** option to **Incident to Facility**.
 v. Set **Allow U-Turns** to **Everywhere**.
 vi. Set **Output Shape Type** to **True Shape**.
 vii. Check the box to **Ignore Invalid Locations**
 c. Click **OK**

12. To calculate the closest Alcohol Sales place to a Participant location, click the **Solve Button** on the Network Analyst Toolbar.
 a. When Network Analyst has solved the calculations, the **Routes** layer will be populated with line segments joining each participant location to its closest alcohol sales place. The Routes attribute table contains the unique IDs for the participant and the alcohol sales place along with the network length separating them and the route name (a concatenation of the participant ID and the facility ID).

13. **Join the Alcohol Sales places and the Participants to the results of the Find Closest Facility analysis.**
 a. Right-click the **Routes** layer
 b. Select **Joins and Relates** and then click **Join**
 i. Choose **Facility ID** as the field to base the join on
 ii. Choose the **Alcohol Sales layer** as the **Table to Join** to this layer
 iii. Choose the **Alc_ID** as the field in the table to based the join on
 iv. Click **OK**
 c. Right-click on the **Routes** layer
 d. Select **Joins and Relates** and then click **Join**
 i. Choose **Incident_ID** as the field to base the join on
 ii. Choose the **Participant layer** as the **Table to Join** to this layer
 iii. Choose the **Par_ID** as the field in the table to base the join on
 iv. Click **OK**
 e. Right-click on the **Routes** layer
 f. Select **Data** and then click **Export Data**
 i. Choose this layer’s source data for the coordinate system
ii. Specify the **Output location**

iii. A new shapefile will be created in the output location. This shapefile will contain the routes from each participant location to the nearest alcohol sales place. Each route will contain the attributes of the participant and the nearest facility.

Calculate the straight-line distance to the nearest alcohol sales place

To follow this protocol, you will need:

1. Participant Locations Point Feature Layer for incidents (origins)
2. Alcohol Sales Places Point Feature Layer for facilities (destinations)

Calculate the straight-line distance to the nearest

1. Start **ArcMap**
2. Click the **Add Data** button on the **Standard Toolbar**
 a. Navigate to the Point Layers to be used in the analysis, in this case the **Participant locations** and the **Alcohol Sales Places**.
 b. Select the **Point Layers** and click **Add** to add them to ArcMap.
3. Open **ArcToolbox** by clicking on the icon.
4. Navigate to the **Near** tool (Analysis Tools -> Proximity) and double-click to open it.
5. Click the down-arrow in the **Input Features** box and select the **Participant Locations** feature layer.
6. Click the down-arrow in the **Near Features** box and select the **Alcohol Sales Places** feature layer.
7. Leave the **Search Radius (optional)** box empty. This will guarantee that every Participant Location will have its nearest alcohol sales place found.
8. Leave the **Location (optional) and Angle (optional)** check boxes unchecked.
9. Click **OK** to execute the tool.
10. The tool will find the nearest alcohol sales place to each participant location and measure the straight-line distance between those points. The tool will add two attributes to the participant location attribute table, **NEAR_DIST** and **NEAR_FID**. The **NEAR_DIST** will contain the distance, in the units of the Layers (e.g., meters, feet). **NEAR_FID** will contain the feature ID of the closest alcohol sales place. Use the **NEAR_FID** attribute to join the Alcohol Sales Places layer to the Participant Location layer to determine the characteristics of the nearest Alcohol Sales Place.

Join the Alcohol Sales Places Layer to the Participant Locations layer using the NEAR_FID attribute.

1. Right-click on the **Participant Location layer** and select **Joints and Relates -> Join…**
2. Choose **NEAR_FID** as the field to base the join on.
3. Choose the **Alcohol Sales Places layer** as the **Table to Join** to this layer.
4. Choose the **FID** attribute as the field in the table to base the join on.
5. Click **OK**. The Alcohol Sales Place attributes will be joined to the Participant locations.
6. **Right-click** on the Participant Locations Layer and select **Data -> Export Data**.
 a. Choose this **layer's source data for the coordinate system**.
 b. Specify the **Output Location**.
 c. Click **OK**.

A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest alcohol sales place to each participant location.

4.12 Density of Alcohol Sales Places

1. Basic Concept

Like the previous protocols his protocol examines both bars and stores selling alcohol. It omits restaurants as these require significant additional purchases.
2. **Basic Definition**
Density of alcohol sales = Total number of stores or bars selling alcohol divided by the land area (excluding water).

3. **Detailed Definition**
Density of alcohol sales = Total number of stores or bars selling alcohol divided by the land area (excluding water). Using NAICS codes 7224: Drinking Places (Alcoholic Beverages) and 4453: Beer, Wine, and Liquor Stores.

4. **Comments and Explanations**
None.

5. **GIS Approach**
The GIS approach is to perform a spatial join between the measurement geographies and the alcohol sales places. This will count the number of alcohol sales places in each measurement geography. Then divide this number by the net land area of each measurement geography.

6. **GIS Steps**
The following procedures were completed using ArcMap (ArcInfo) 9.2.

To complete this protocol you will need:
1. **Study-site Layer** (polygon)
2. **Alcohol Sales Places Layer** (point)

Refer to protocol 2.1 for the procedures to calculate net land area (land area with water features removed)

Add the Alcohol Sales Places and Study-Site layer to an ArcMap Document.
1. Right-click on the **Study-Site Layer** and choose **Joins and Relates -> Join**.
2. Under the dropdown box labeled **What do you want to join to this layer?**, choose **Join data from another layer based on spatial location**.
3. In Step 1 of the dialog box, choose the Alcohol Sales Places layer.
4. In Step 2, click the button to choose **Each polygon will be given a summary of the numeric attributes...**
5. In Step 3, choose a name and location for the output layer.
6. Click **OK**.
7. The output layer now contains a **Count** field with the number of alcohol sales places found in each features of the Study-Site layer.

Calculate the alcohol sales places per net land area:
1. Right-click on the **output layer** of the **spatial join** and select **Open Attribute Table**.
2. Click **Options** and choose **Add Field**.
3. Name the field **AlcDens** and change the type to **Double**.
4. Click **OK** to add the field.
5. In the **Table of Contents**, right-click on the **output layer** from the **spatial join** performed above and choose **Joins and Relates -> Join**.
6. In the dropdown box, choose to **Join Attributes** from a table.
7. In Step 1, choose to base the join on the field containing the unique ID of the measurement geographies.
8. In Step 2, load the table from the result of following **protocol 2.1, Net Land Area**.
9. In Step 3, choose the field in the Net Land Area Layer’s table containing the unique ID of the measurement geographies.
10. Click **OK**.
11. Open the **Attribute Table** of the output layer from the spatial join, which now has the net land area table joined to it.
12. Right-click on the **AlcDens** field and choose **Field Calculator**…
13. In the Field Calculator dialog box, click the **Count** field, then click the `/` button, and finally click the name of the field containing the net land area.
14. Click **OK**.

The AlcDens field now contains the density of alcohol sales places (number of alcohol sales places divided by the net land area in whichever units you used).
5. YOUTH AND UTILITARIAN OR RECREATIONAL PHYSICAL ACTIVITY

Note: Many of these protocols draw on work previously done in the companion physical activity protocols but were updated and modified for this study by Ann Forsyth (selection of protocols, concepts, definitions) and David Van Riper (GIS steps).

Research on adult physical activity has mixed results but focuses attention on a number of aspects of the environment including density, pedestrian infrastructure, land-use mix, street pattern, and recreational faculties. Research on youth focuses on many similar things.

DENSITY

5.1 Raw Population per Unit Land Area: See NEAT GIS Protocol 3.1

This uses the existing NEAT GIS Protocol. Be sure to use the latest version--4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

5.2 Population per Unit Land Area (without water): See NEAT GIS Protocol 3.2 (2010 EAT-III & ECHO)

This uses the existing NEAT GIS Protocol. Be sure to use the latest version--4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

5.3 Residential Population in Residential Parcels (Residential Density) (without water): based on NEAT GIS Protocol 3.4 but updated

Note: This protocol was significantly revised for Version 1.3. Some earlier versions of this protocol used the Geoprocessing Wizard and Xtools. ArcGIS 9.2 has replaced the Geoprocessing Wizard with the Intersect Tool, and it offers a Calculate Geometry dialog box, negating a need for Xtools. The protocol detailed below has been tested in ArcGIS 9.2.

1. Basic Concept
This density calculation reflects the kinds of densities that are talked about by developers, rather than the experience of place. That is, while people experience a whole environment – including roads and non-residential uses – developers build on parcels and density is often debated in those terms.

We propose to do some measurements using this definition of density to see if it has any relation at all to actual physical activity in a specific place.
2. Basic Formula
Residential Population in Residential Parcels = Persons in housing units per unit land area in residential parcels.

3. Detailed Formula
Residential Population in Residential Parcels = Persons in housing units as measured in the US Census at the block level per unit land area in residential parcels, excluding rights of ways, water bodies, and land not in parcels.

4. Comments and Explanations
This calculation requires that the parcels layer contain land-use information that can identify residential parcels. Also, where census blocks are cut by the end of the measurement geography, the population is apportioned according to the percentage of land area falling inside and outside the line.

5. GIS Approach
Use a definition query to display only residential parcel layer. Intersect these residential parcels with the measurement geographies. Summarize the resulting layer’s attribute table by measurement geography and sum the area. Apportion the census population by intersecting the census blocks with the measurement geographies. Summarize the resulting layer’s attribute table by measurement geography ID and sum the population. For each measurement geography, divide the sum of apportioned population by the sum of residential hectares.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.2.

To follow this protocol you will need:
1. Study-site layer (polygon) with unique ID field
2. Parcels Layer (polygon)
3. Census Block Layer (polygon) with field containing population

Use a Definition Query to display only residential parcels
1. In the Table of Contents (the pane with the list of layers), right-click on the Parcels Layer and choose Properties.
2. Go to the Definition Query tab and click Query Builder.
3. Construct an SQL expression that applies to whichever field contains the land-use data of the parcels and selects the values that identify residential uses.
4. Click Ok to close the Query Editor and then Ok again to close the Layer Properties window.
5. Ensure that only the residential parcels in your Parcels Layer are displayed.

Intersect residential parcels with the study-site layer:
1. Add the Study-Site Layer to your Map Document.
2. Open ArcToolbox and navigate to the Intersect tool (Analysis Tools -> Overlay -> Intersect). Double-click the Intersect tool to open it.
 a. For the Input Features, click on the down-arrow and select the Land-Use Parcels Layer from the list of Layers.
 b. Repeat step 2.a and select the Study-Site Layer.
 c. Specify a name and location for the output layer in the Output Feature Class box.
 d. Set the JoinAttributes drop-down box to ALL.
i. The **ALL** option will transfer all the attributes from the input features to the output feature class.
e. Leave the **XY tolerance** box empty.
f. Set the **Output Type** to **INPUT**.
 i. The **INPUT** option will return intersections with the same geometry type as the Input Feature with the lowest geometry dimension.
g. Click **OK** to execute the **Intersect**. The output feature class will be added to the Map Document.
h. The **Parcels** will now be clipped to the study-site boundaries and be assigned the ID associated with the study-site in which it is located. Note that parcels which exist in two or more overlapping study-sites will be represented by two or more identical (except for Study-Site ID number) rows in the Attribute Table.

Calculate the area of the residential parcels within each study-site:
1. Right-click on the layer created by the **Intersect** tool and select **Open Attribute Table**.
2. Click on the **Options** button and select **Add Field...**
3. Type **Hectares** in the **Name** field and set the **Type** to **Double**.
4. Click **OK**.
5. Right-click on the **Hectares** field and select **Calculate Geometry...**
6. Set the **Property**: **box** to **Area**.
7. Set the **Coordinate System** to “Use coordinate system of the data source;”.
8. Set the **Units** to **Hectares [ha]**.
9. Click **OK**. This will calculate the area, in hectares, of each land-use type within a given study-site.

Determine the total area of residential parcels within each study-site:
1. Open the attribute table of the layer created by the **Intersect** tool.
2. Right-click on the **study-site ID** and select **Summarize...**
3. In the **Summarize...** dialog box, click on the **plus** sign next to the **Hectares** field.
4. Click the **checkbox** next to **Sum**. This will add the hectares of residential parcels in each study-site.
5. Specify a name and location for the output file.
6. Click **OK**. The output table will be added to the Map Document.

Create the **Census Block Layer with water features** removed:
1. Add the **Census Block Layer** and **Water Features** layer to your Map Document.
2. Open **ArcToolbox** and navigate to the **Erase** tool (Analysis Tools -> Overlay). Open the **Erase** tool by double-clicking it.
3. In the **Input Features** drop-down box, select the **Census Block layer**.
4. In the **Erase Features** drop-down box, select the **Water Features layer**.
5. Specify the location and name of the output feature class.
6. Click **OK**.
7. The output feature class will be generated and added to the map document.

Determine the **apportioned census population figure** for each site:
1. Calculate the area for the census block layer with the water removed.
 a. Right-click on the **census block layer with water removed** and select **Open Attribute Table...**
 b. Click on the **Option** button and select **Add Field...**
 c. Type **Hectares** in the **Name** field and set the **Type** to **Double**.
 d. Click **OK**.
 e. Right-click on the **Hectares** field and select **Calculate Geometry...**
 f. Set the **Property**: **box** to **Area**.
 g. Set the **Coordinate System** to “Use coordinate system of the data source;”
 h. Set the **Units** to **Hectares [ha]**.
 i. Click **OK**.
2. Intersect the census block layer with water removed with the Study-Site layer.
 a. Open **ArcToolbox** and navigate to the **Intersect** tool (Analysis Tools -> Overlay -> Intersect).
 Double-click the **Intersect** tool to open it.
For the **Input Features**, click on the down-arrow and select the **Census Block Layer with Water Features removed**.

Repeat 2.b and select the **Study-Site layer**.

Specify a name and location for the output layer in the **Output Feature Class** box.

Set the **JoinAttributes** drop-down box to **ALL**.

The **ALL** option will transfer all the attributes from the input features to the output feature class.

Leave the **XY Tolerance** box empty.

Set the **Output Type** to **INPUT**.

The **INPUT** option will return intersections with the same geometry type as the Input Feature with the lowest geometry dimension.

Click **OK** to execute the **Intersect**. The output feature class will be added to the Map Document.

3. Update the areas of the clipped census block layer with water features removed.

a. Open the **Attribute Table** of the clipped Census Block Layer with water features removed created in the previous step.

b. Click on **Options** and choose **Add Field**…

c. Type **OrigHect** in the **Name** field and set the **Type** to **Double**.

d. Right-click on the **OrigHect** field.

e. Choose **Field Calculator**…

f. In the **Field Calculator**, click **Hectares** and click **OK**.

g. You have now copied the values from **Hectares** to **OrigHect**.

h. Right-click on the **Hectares** field and select **Calculate Geometry**…

i. Set the **Property** box to **Area**.

ii. Set the **Coordinate System** to “Use coordinate system of the data source:”

iii. Set the **Units** to **Hectares [ha]**.

iv. Click **OK**.

4. Perform the population apportionment.

a. Open the Attribute table of the clipped Census Block Layer with water features removed.

b. Click on the **Option** button and select **Add Field**…

c. Type **PopSplit** in the **Name** field and set the **Type** to **Double**.

d. Click **OK**.

e. Right-click on the **PopSplit** field and select **Field Calculator**…

f. In the Field Calculator, click **Hectares**, then click the “/” operator, then click **OrigHect**, then click the “*” operator, and finally click the name of the **Population field**.

g. Click **OK**.

5. Calculate the total population of each study-site.

a. Open the Attribute table of the clipped Census Block Layer with water features removed.

b. Right-click on the attribute containing the **study-site ID** and choose **Summarize**…

i. In the box beneath **Choose one or more summary statistics**, click the plus sign next to **PopSplit**.

ii. Click the checkbox next to **Sum**.

iii. Choose a name and location for the **Output Summary Table**.

iv. Click **OK**.

The output summary table will contain the apportioned population sum for each study-site.

Perform the final calculation:

1. Open the output summary table created in the previous step.

a. Click the **Option** button and select **Add Field**…

b. Type **ResPop** in the **Name** field and set the **Type** to **Double**.

c. Click **OK**.

2. Join the table containing the area of residential parcels within each study-site to the table containing the apportioned population in each study-site.

a. Right-click on the **apportioned population table**, select **Joins and Relates**…, and then **Join**…

b. Under 1. **Choose the field in this layer that the join will be based on**; click the down-arrow and select the **Study-Site ID**.
c. **Under 2. Choose the table to join to this layer, or load the table from disk:**, click on the down-arrow and select the table containing the area of residential parcels within each study-site.
d. **Under 3. Choose the field in the table to base the join on:**, click the down-arrow and select the **Study-Site ID**.
e. Click **OK** to execute the join.

3. Open the table containing the apportioned population in each study-site. It will now have the residential parcels area joined to it.
 a. **Right-click on the ResPop attribute and select Field Calculator…**
 b. In the **Field Calculator**, click the **PopSplit** attribute, then click the “/” operator, and then click the attribute containing the sum of the residential parcels area in each study-site.

The ResPop field now contains the population per hectare of residential land in the study-site.

5.4 Employment Per Unit Land Area: Based on NEAT GIS Protocol 3.6 but updated

Note: This was based on the existing NEAT GIS Protocol 3.6 from version 4.1 of the manual but steps were updated significantly in Version 1.3. GIS steps were updated in version 2.0 though this protocol is not being used

1. **Basic Concept**
 While residential population is the most often used density measure, and an overall activity density is likely important, a number of researchers have propose that employment density may be associated with walking. In downtown areas this is obvious as congestion makes automobiles less viable for transportation. In terms of the residential populations in the Twin Cities Walking Study, however, employment density in these neighborhoods is more likely a proxy of mixed use.

A later version of this manual will address prior studies using various employment density measures, although many were only of land in parcels, e.g., Cervero and Kockelman (1996, 8), Ewing (1995, 55), and Frank and Pivo (1994, 46-48).

2. **Basic Formula**
 Employment per Unit Land Area = Total employees per unit land area (excluding water).

3. **Detailed Formula**
 Employment Per Unit Area = Total employees per unit land area (excluding water).

4. **Comments and Explanations**
 Area of water features is excluded in the calculation of area. The methods explained below are narrowly tailored to the nature of the employment data we purchased.

Employment is from Business Analyst InfoUSA with some checking of data.

5. **GIS Approach**
 The approach to this measurement is to perform a spatial join between the employment data and the study sites for which employment density is needed. When doing the spatial join, calculate the sum of all employment. Finally, divide the total employment for each study site by its area.
6. GIS Steps

The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:

1. Participant Buffers if already created or Study-Site Layer (polygon) with unique ID field
2. Employment Data Layer (point)
3. Water Features Layer (polygon)

If the Participant Buffers have already been created, use those for this protocol. If not, use NEAT Protocol 2.1 Net Land Area (without water) to create the participant buffers.

Find the employment data points within the study-sites (without layer)

1. Add the Participant buffers and the Employment Data layer to an ArcMap Document.
2. Right-click on the Participant buffer and choose Joins and Relates -> Join…
3. Under the drop-down box labeled What do you want to join to this layer? choose Join data from another layer based on spatial location.
4. In Step 1 of the dialog box, choose the Employment Data layer.
5. In Step 2, click the button to choose Each polygon will be given a summary of the numeric attributes… and also click the check-box next to Sum.
6. In Step 3, choose a name and location for the output layer.
7. Click OK.
8. The output layer now contains a Count field with the number of Businesses found within each Study Site. The Sum_NUMBER_EMP attribute contains the sum of employment for those businesses within each Study Site.

Calculate the employment per unit land area

1. Add an attribute to hold the Employment per Unit Land Area value to the Participant buffer.
 a. Right-click on the Participant buffer and select Open Attribute Table.
 b. Click the Options button and select Add Field…
 c. Name the field EmpPerHect and change the Type to Double.
 d. Click OK.
2. Join the output layer from the previous procedure to the Study-Site Layer (without water).
 a. Right-click on the Participant buffer and choose Joins and Relates -> Join.
 b. Under the dropdown labeled What do you want to join to this layer? choose Join attributes from a table.
 c. Choose the unique ID for each study site as the field to base the join on.
 d. Choose the output layer from the previous procedure as the Table to Join to this layer.
 e. Choose the unique ID for each study site as the field to base the join on.
 f. Click OK.
3. Perform the final calculation
 a. Right-click the EmpPerHect field in the Participant buffer and select Field Calculator…
 b. In the Field Calculator, click the field Sum_Employment, click the / button, and then click the Hectares field.
 c. Click OK.

The EmpPerHect field now contains the number of employees per hectare (excluding the water of water features).

PEDESTRIAN INFRASTRUCTURE

In these protocols we only deal with topics for which there is existing data.
5.5 Distance to Nearest Transit Stop: Based on NEAT GIS Protocol 4.10 but updated (2010 ECHO)

Note: The steps were updated in Version 1.3. It was based on the existing NEAT GIS Protocol 4.10 in version 4.1 of the manual.

1. Basic Concept

People walk to transit. The distance to the nearest transit stop may be associated with physical activity.

This relates to the TREC-IDEA survey question:
- SS178 About how long would it take to get from your home to the nearest bus stop if you walked? (Adapted from NEWS B20 (14))

2. Basic Definition

Distance to Nearest Facility = Straight line or network distance to the nearest transit stop.

3. Detailed Definition

Distance to Nearest Facility = Straight line or network distance to the centroid of the nearest transit stop using bus stop and light-rail stop data from the Metropolitan Council.

4. Comments and Explanations

This is done using Network Analyst in ArcMap (ArcInfo) 9.3.1 using a function called OD Cost Matrix. You can specify a point layer to use as your “origins” and another point layer to serve as your destinations. It will then take the road network and calculates the network distance from each origin to all destinations. The function then ranks the distances from 1 (shortest network distance) to N (longest network distance) (and it can do this using travel costs as well, if certain type of roads were considered more or less easy to use, for instance).

For points that do not fall on the network, there is an option in the Load Locations dialog box that allows the user to decide how far away from the network to search for points to use in the processing.

We used all transit stops—some may be more active than others.

5. GIS Approach

The approach for this measure is to load a set of origins (in this case, participant locations) and destinations (transit stops). Then use the OD Cost Matrix function in Network Analyst to calculate the network distance from each origin to the all transit stops.

6. GIS Steps

The following procedures were completed in ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:

1. Road Network dataset
2. **Transit Stop Locations Point Feature Layer** for facilities
3. **Participants’ Locations Point Feature Layer** for incidents
4. **Network Analyst Extension** for ArcGIS 9.3.1

Calculate the Network Distance to the nearest transit stop:
1. Use LEAN Protocol 2.6 to determine the network distance to the nearest transit stop. The participant locations are the XXX and the transit stop locations are the features of interest

Calculate straight-line distance to nearest transit stop

To follow this protocol, you will need:
1. **Participant Locations Point Feature Layer** for incidents (origins)
2. **Transit Stop Point Feature Layer** for facilities (destinations)

Calculate the straight-line distance to the nearest transit stop

1. Start **ArcMap**.
2. Click the **Add Data** button on the **Standard Toolbar**.
 a. Navigate to the Point Layers to be used in the analysis, in this case the **Participant locations** and the **Transit Stops**.
 b. Select the Point Layers and click **Add** to add them to ArcMap.
3. Open **ArcToolbox** by clicking on the icon.
4. Navigate to the **Near** tool (Analysis Tools -> Proximity) and double-click to open it.
5. Click the down-arrow in the Input Features box and select the **Participant Locations** feature layer.
6. Click the down-arrow in the Near Features box and select the **Transit Stops** feature layer.
7. Leave the **Search Radius (optional)** box empty. This will guarantee that every Participant Location will have its nearest transit stop found.
8. Leave the **Location (optional)** and **Angle (optional)** check boxes unchecked.
9. Click **OK** to execute the tool.
10. The tool will find the nearest transit stop to each Participant Location and measure the straight-line distance between those points. The tool will add two attributes to the participant location attribute table, NEAR_DIST and NEAR_FID. NEAR_DIST will contain the distance, in the units of the Layers (e.g., meters, feet). NEAR_FID will contain the feature ID of the closest transit stop. Use the NEAR_FID attribute to join the Transit Stop Layer to the Participant Location layer to determine the characteristics of the nearest transit stop.

Join the Participant Location Layer to the Transit Stop Layer using the NEAR_FID attribute.

1. Right-click on the Participant Location layer and select **Joins and Relates -> Join…**
2. Choose NEAR_FID as the field to base the join on.
3. Choose the Transit Stop layer as the Table to Join to this layer.
4. Choose the FID attribute as the field in the table to base the join on.
5. Click **OK**. The Transit Stop attributes will be joined to the Participant locations.
6. Right-click on the Participant Locations Layer and select **Data -> Export Data**.
 a. Choose this layer’s source data for the coordinate system.
 b. Specify the **Output Location**.
 c. Click **OK**.

A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest transit stop to each participant location.

5.6 Transit Stop Density: See NEAT GIS Protocol 4.11 (2010 EAT-III)

This uses the existing NEAT GIS Protocol. Be sure to use the latest version--4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.
LAND-USE MIX

5.7 Percentage of Total Parcel Area in Major Land Uses (residential, commercial, office, industrial, institutional, park and recreation, vacant): Based on NEAT GIS Protocol 5.1 (2010 EAT-III)

This is based on the existing NEAT GIS Protocol 5.1 updated for version 4.1 of the protocols however as of version 1.1 we are debating how to exclude water most effectively given changes in GIS software. This protocol will be updated before actual measurement occurs. It was updated again in Version 1.3.

1. Basic Concept
A simple measure of land-use percentage in major uses, this is less a measure of mix per se than the relative amount of each land use: residential, commercial, office, industrial, institutional, park and recreation, vacant.

2. Basic Formula
Percentage of Total Parcel Area in Major Land Uses = Total area in each of seven major land-use categories (residential, commercial, office, industrial, institutional, park and recreation, vacant) divided by total land area in parcels.

3. Detailed Formula
Percentage of Total Parcel Area in Major Land Uses = Total area in parcels in each of the seven major land-use categories (residential, commercial, office, industrial, institutional, park and recreation, vacant) divided by total land area in parcels, with water area removed. Note that some land uses (agricultural, airport, non-roadbed right of way) are not included in our seven major land-use categories, but are included in the total land area figures.

Fig. 5.1. Parcels coded with the seven major land-use categories:

- Residential – yellow
- Commercial – red
- Institutional – purple
- Office – blue
- Park and recreation – green
- Industrial – dark grey
- Vacant - not marked
4. Comments and Explanations

Land uses were assigned at the parcel level and reflected the most detailed data available. These data were then generalized to our seven major land-use categories.

Complicating factors may, however, be unique to our data:

a. Two different water layers were used for exclusions (see earlier discussion in chapter 1).

b. We used two methods for assigning land uses, depending on whether the parcels were in our original Context Areas or fell within our extended buffer areas (see appendix 5C for details on how this was done).

c. In general, we field-checked in the context areas, and where large buffers fell outside the context areas, we felt that the errors from using Metropolitan Council data would not be so large.

5. GIS Approach

The parcel layer (with areas of water removed) was intersected with the measurement geographies and the areas of the parcels recalculated to account for those that were split by the study site boundaries. The land uses associated with each parcel were generalized into seven major land-use categories. For each study site, the total area of each land-use category was summarized. The percentages of the total parcel area for each study site were then calculated.

6. GIS Steps [Note these steps are partially updated and should not be used!!!]

The following procedures were completed using ArcMap (ArcInfo) 9.2.

To complete this protocol you will need:
1. Study-Site Layer (polygon)
2. Land-Use Parcels Layer (polygon)
3. Water Features Layer (polygon)
4. Microsoft Excel or other spreadsheet program

Determine Net Land Area (without water) for each Site: Follow the steps outlined in the protocol above

Convert land uses into seven categories:
1. Add the Land-Use Parcel Layer to an ArcMap document.
2. Right-click on the Land-Use Parcel layer and select Open Attribute Table.
3. Click on the Options button and select Add Field.
4. Name the field LUC7.
5. Select Text as Type and set the Length to 20.
6. Reclassify your parcels so that the land uses are generalized into the seven major land-use categories (residential, commercial, office, industrial, institutional, park and recreation, vacant). How this is done depends on the level of detail of your existing land-use categories – for example, if you have Small-scale Commercial, Strip Commercial, and Shopping Center land uses, these would all be generalized to a new land-use code of Commercial.
7. Enter the new land-use codes in the LUC7 field.
 a. Click Options and choose Select by Attributes…
 i. Construct an SQL Query in the Dialog box as follows: “LUSE2005” = 100 OR “LUSE2005” = 201 OR “LUSE2005” = 203
 ii. Click Close to execute the Query.
This will select all parcels classified as Agriculture, Major Highways, or Airports.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to OTHER.

Click Options and choose Select by Attributes...
Click Close to execute the Query.
This will select all parcels classified as Farmsteads, Single-Family Residential, or Multifamily Residential.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to RESIDENTIAL.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 120 OR “LUSE2005” = 143
Click Close to execute the Query.
This will select all parcels classified as Commercial – Retail or Mixed-Use Commercial.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to COMMERCIAL.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 130 OR “LUSE2005” = 141
Click Close to execute the Query.
This will select all parcels classified as Commercial – Office or Mixed-Use Residential.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to OFFICE.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 142 OR “LUSE2005” = 151 OR “LUSE2005” = 153 OR “LUSE2005” = 202
Click Close to execute the Query.
This will select all parcels classified as Mixed-Use Industrial, Industrial and Utility, Extractive, or Railway.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to INDUSTRIAL.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 160.
Click Close to execute the Query.
This will select all parcels classified as Institutional.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to INSTITUTIONAL.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 170 OR “LUSE2005” = 173
Click Close to execute the Query.
This will select all parcels classified as Park, Rec, and Preserve or Golf Courses.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to PARK AND REC.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 210
Click Close to execute the Query.
This will select all parcels classified as Undeveloped.
Right-click on the LUC7 field and select Field Calculator...
Set LUC7 equal to VACANT.

Click Options and choose Select by Attributes...
Construct an SQL query in the Dialog box as follows: “LUSE2005” = 220
ii. Click Close to execute the Query.

iii. This will select all parcels classified as Water.

iv. Right-click on the LUC7 field and select Field Calculator…

v. Set LUC7 equal to WATER.

Remove water from the Land-use Parcels Layer.
1. Add the Land-Use Parcel Layer and the Water Features Layer to an ArcMap document.
2. Open ArcToolbox and navigate to the Erase tool (Analysis Tools -> Overlay). Open the Erase tool by double-clicking it.
3. In the Input Features drop-down box, select the Land-Use Parcel layer.
4. In the Erase Features drop-down box, select the Water Features layer.
5. Specify the location and name of the output feature class.
6. Click OK.
7. The output feature class will be generated and added to the Map Document.

Use a Definition Query to exclude Land-use water areas from the Land-Use Parcels Layer. This will eliminate water polygons that are in the land-use parcels layer but were missed during the previous step.
1. In the Table of Contents, right-click on Land-use Parcels layer with water removed and select Properties.
2. Go to the Definition Query tab and click Query Builder.
3. Construct an SQL expression that applies to whichever field contains the land-use code and exclude values that represent water.
4. Click OK to close the Query Builder and OK to close the Layer Properties window.
5. Ensure that water parcels in the Land-use Parcels layer with water removed are excluded.
6. Right-click on the Land-use Parcels layer with water removed and select Data -> Export Data…
7. Click the radio-button next to “Use the same Coordinate System as this layer’s source data” and specify a location and name for the output shapefile.
8. Click OK. This will create a shapefile with water features removed as well as water parcels removed.

Intersect parcels with study-site layer:
1. If the Study-Site Layer does not have unique IDs or names for each site, create them now.
 a. Right-click on the Study-Site Layer and select Open Attribute Table.
 b. Click on the Options button and select Add Field.
 c. Name the field Study_ID.
 d. Select Short Integer as Type and accept default (0) for Precision.
 e. Click OK.
 f. Right-click on the Study_ID field and select Field Calculator…
 g. Set the Study_ID equal to [FID] +1.
 h. Click OK.
2. Open ArcToolbox by clicking on the icon and navigate to the Intersect tool (Analysis Tools -> Overlay -> Intersect). Double-click the Intersect tool to open it.
 a. For the Input Features, click on the down-arrow and select the Land-Use Parcels layer with water features removed and water parcels excluded from the list of Layers.
 b. Repeat 2.a and select the Study-Site Layer.
 c. Specify a name and location for the output layer in the Output Feature Class box.
 d. Set the JoinAttributes drop-down box to ALL.
 i. The ALL option will transfer all the attributes from the input features to the output feature class.
 e. Leave the XY Tolerance box empty.
 f. Set the Output Type to INPUT.
 i. The INPUT option will return intersections with the same geometry type as the Input Feature with the lowest geometry dimension.
 g. Click OK to execute the Intersect. The output feature class will be added to the Map Document.
 h. The parcels will now be clipped to the study-site boundaries and be assigned the ID associated with the study-site in which it is located. Note that parcels which exist in two or more overlapping study
sites will be represented by two or more identical (except for Study-Site ID number) rows in the Attribute Table.

Dissolve the intersect results to create unique combinations of land use and study-site ID:
1. In ArcToolbox, find the Dissolve tool by navigating through Data Management -> Generalization
 a. Input Features are the result of the Parcels – Study-site intersection.
 b. Specify a name and location for the output layer.
 c. Under Dissolve Field(s), click the checkbox next to LUC7 and the Study-Site ID field.
 d. Ensure the Multipart option (at the bottom of the dialog box) is checked.
 e. Click OK.
 f. The output layer will contain the polygons for each land-use type within a study-site.

Calculate the area of each land-use class contained within each study-site:
1. Right-click on the layer created by the Dissolve tool and select Open Attribute Table…
2. Click the Options button and select Add Field…
3. Type Hectares in the Name field and set the Type to Double.
4. Click OK.
5. Right-click on the Hectares field and select Calculate Geometry…
6. Set the Property: box to Area.
7. Set the Coordinate System to “Use coordinate system of the data source:”.
8. Set the Units to Hectares [ha].
9. Click OK. This will calculate the area, in hectares, of each land-use type within a given study-site.

Calculate land-use percentages for each site:
1. Open ArcToolbox and find the Pivot Table tool by navigating through Data Management Tools -> Table.
 Double-click on the Pivot Table tool to open.
2. Click on the down-arrow button by Input Table and select the dissolved layer.
3. The Input Field is the unique ID for the study-site.
4. The Pivot Field is the field containing the land-use codes.
5. The Value Field is the field containing the Hectares values.
6. Specify the name and location of the output pivot table.
7. Click OK. This function will create a table with one row for each study-site and a column for every land-use type. If a land-use type is found in a study-site, the area of that land-use type will be contained in the cell.
8. Right-click on the study-site layer and select Open Attribute Table…
9. Add an attribute that will contain land-use percentages for each Land Use type.
 a. Click the Option button and select Add Field…
 b. Change the name to Perc_<Land-Use_Type>, where <Land-Use_Type> is one of the seven land-use type. Set the Type to Double and click OK.
 c. Repeat steps 9a and 9b for the other six land-use type.
10. Join the table created by the Pivot Table tool to the study-site attribute table.
 a. Right-click on the study-site attribute table and select Joins and Relates -> Join…
 b. Under What do you want to join to this layer?, click the drop-down arrow and select Join attributes from a table.
 c. Select the unique study-site ID for 1. Choose the field in this layer that the join will be based on:
 d. Under 2. Choose the table the join this layer, or load the table from disk:, choose the table created by the Pivot Table tool.
 e. Select the unique study-site ID for 3. Choose the field in the table to base the join on:
 f. Click OK.
11. Right-click on the study-site layer and select Open Attribute Table… The pivot table should be joined to the study-site layer.
12. Calculate the percentage of total parcel area in each land use.
 a. For each land-use percentage attribute, right-click on the attribute and select Field Calculator…
 b. Click on the field holding the hectares of the particular land-use, then click the / button, then click the field holding the total hectares for the study-site, then click the * button, and finally type 100.
 c. Click OK. This will calculate the percentage of land parcel area in the particular land-use type.
5.8 Retail Employment Density: Updated from on NEAT GIS Protocol 5.11 (EAT-III)

This uses the existing NEAT GIS Protocol 5.11 from Version 4.1 of the protocols. GIS steps were updated in version 2.0 though it is not being used in EAT-III or ECHO.

1. Basic Concept
Retail uses are thought to promote walking.

2. Basic Formula
Retail Employment per Unit Area = Total retail employees per unit land area (excluding water).

3. Detailed Formula
Retail Employment per Unit Area = Total retail (NAICS 44-45) employees per unit land area (excluding water).

4. Comments and Explanations
We used SIC codes to correspond with earlier research. In later versions of these protocols we will provide the NAICS equivalent.

Retail data came from Business Analyst InfoUSA but were checked against other employment data.

In an earlier version of the protocols we proposed that the measure be made in increments of 100*100-meter grid cells. We gained access to point data, however, and could then use standard buffers.

5. GIS Approach
Divide the total retail employment in each buffer by that buffer’s area (excluding water).

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:
1. Participant Buffer Layers (polygon) with unique ID field
2. Business Analyst InfoUSA Layer (point)
3. Water Features Layer (polygon)

Query the employment data to show only retail businesses:
1. Add the Business Analyst InfoUSA Layer to your Map Document.
2. Right-click on the Business Analyst InfoUSA Data Layer in the Table of Contents and choose Properties.
3. Click the Definition Query tab.
4. Click on the Query Builder button.
5. Construct a query that will identify all retail employment businesses.
 a. Click NAICS_EXT from the list of variables.
 b. Click the LIKE button.
 c. Type in ‘44%’
 d. Click the OR button.
e. Click NAICS_EXT again from the list of variables
f. Click the LIKE button
g. Type in ‘45%’

6. Click OK to close the Query Builder and OK again.
7. The Employment Data Layer should be updated to show only retail businesses in the data view.

Use Protocol 2.1 to create a participant buffer layer with the water feature removed if it has not been created already.

Perform a spatial join between the study-site layer and employment layer:
1. Right-click the Participant Buffer Layer and choose Joins and Relates → Join.
2. In the top dropdown box, make sure it is set to Join data from another layer based on spatial location.
3. In the next item down, select the Business Analyst InfoUSA Layer to be the layer to join to the buffers.
4. Select Each polygon will be given a summary of the numeric attributes and check the box below next to Sum.
5. At the bottom, choose a name and location for the output file.
6. Click on OK.

The resulting file will have a field in its Attribute Table called Sum_NUMBER_EMP or similar (depending on the name of the field containing the number of employees in the original employment layer). The new layer should have the same number of features as the Study-Site Layer.

Perform the final calculation of the number of retail employees per hectare (excluding the area of water features).
1. Open the attribute table of the output file created in the previous step.
2. Click on the Option button and select Add Field…
3. Name the field RetPerHect and set the type to Double.
4. Right-click on the RetPerHect field and select Field Calculator…
5. In the Field Calculator, click on the field containing the sum of retail employees, click the / button, and then click the Hectares field.
6. Click OK.

The RetPerHect field now contains the number of employees per hectare (excluding the area of water features).

5.9 Distance to Nearest Facility (Mentioned in the Survey): Stores in Total, Hardware Stores

Note this builds on the NEAT GIS Protocols 5.14 but has been modified to reflect the needs and interests of youth. It looks at to specific issues: total stores (including hardware stores) and hardware stores. Hardware stores are separated out because we were trying to match a question in the TREC-IDEA parent survey and were already measuring the other destinations mentioned in the survey. GIS steps were updated in version 2.0 though it is not being used in EAT-III or ECHO.

1. Basic Concept
This related to survey questions will allow us to analyze perceived versus real distances.
- Ps 65/66 In the past month, how many times did you buy food/sweetened beverage at a convenience store, gas station, hardware store, or a vending machine?
- SS176 About how long would it take to get from your home to the nearest store (video, clothes, pharmacy) if you walked? (Adapted from NEWS B16 (14))

The nearest store will be classified as using the following NAICS codes explained at http://www.census.gov/epcd/naics02/N2SIC44.HTM:
441 Motor Vehicle and Parts Dealers
442 Furniture and Home Furnishings Stores
443 Electronics and Appliance Stores
444 Building Material and Garden Equipment and Supplies Dealers
445 Food and Beverage Stores
446 Health and Personal Care Stores
447 Gasoline Stations
448 Clothing and Clothing Accessories Stores
451 Sporting Goods, Hobby, Book, and Music Stores
452 General Merchandise Stores
453 Miscellaneous Store Retailers

Hardware stores are defined as 44413 Hardware Stores and 44411 Home Centers.

2. Basic Definition
Distance to Nearest Facility = Straight line or network distance to the centroid of the nearest store (including hardware) or hardware store (alone).

3. Detailed Definition
Distance to Nearest Facility = Straight line or network distance to the centroid of the nearest store (including hardware) or hardware store (alone) defined using NAICS codes.

4. Comments and Explanations
None.

5. GIS Approach
This is done using Network Analyst in ArcMap (ArcInfo) 9.2 using a function called OD Cost Matrix. You can specify a point layer to use as your “origins” and another point layer to serve as your destinations. It will then take the road network and calculates the network distance from each origin to all destinations. The function then ranks the distances from 1 (shortest network distance) to N (longest network distance) (and it can do this using travel costs as well, if certain type of roads were considered more or less easy to use, for instance).

For points that do not fall on the network, there is an option in the Load Locations dialog box that allows the user to decide how far away from the network to search for points to use in the processing.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
The following procedures were completed in ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:
1. Road Network dataset
2. Facility Point Feature Layer for facilities (destinations)
3. Participants’ Locations Point Feature Layer for incidents (origins)
4. Network Analyst Extension for ArcGIS 9.2
Calculate the Network Distance to the nearest facility:

1. Use LEAN Protocol 2.6 to determine the network distance to the nearest facility. The participant locations are the XXX and the facilities are the features of interest.

Calculate straight-line distance to nearest facility

To follow this protocol, you will need:

1. **Participant Locations Point Feature Layer** for incidents (origins)
2. **Facilities Point Feature Layer** for facilities (destinations)

Calculate the straight-line distance to the nearest facility

1. **Start ArcMap.**
2. Click the **Add Data** button on the **Standard Toolbar**.
 a. Navigate to the Point Layers to be used in the analysis, in this case the **Participant locations** and the **Facilities**.
 b. Select the Point Layers and click **Add** to add them to ArcMap.
3. Open **ArcToolbox** by clicking on the icon.
4. Navigate to the **Near** tool (Analysis Tools -> Proximity) and double-click to open it.
5. Click the down-arrow in the Input Features box and select the **Participant Locations** feature layer.
6. Click the down-arrow in the Near Features box and select the **Facilities** feature layer.
7. Leave the **Search Radius (optional)** box empty. This will guarantee that every Participant Location will have its nearest facility found.
8. Leave the **Location (optional) and Angle (optional)** check boxes unchecked.
9. Click **OK** to execute the tool.
10. The tool will find the nearest facility to each Participant Location and measure the straight-line distance between those points. The tool will add two attributes to the participant location attribute table, **NEAR_DIST** and **NEAR_FID**. **NEAR_DIST** will contain the distance, in the units of the Layers (e.g., meters, feet). **NEAR_FID** will contain the feature ID of the closest facility. Use the **NEAR_FID** attribute to join the Facilities Layer to the Participant Location layer to determine the characteristics of the nearest Facility.

Join the Participant Location Layer to the Facility Layer using the **NEAR_FID** attribute.

1. **Right-click** on the Participant Location layer and select **Joins and Relates -> Join…**
2. Choose **NEAR_FID** as the field to base the join on.
3. Choose the **Facility** layer as the Table to Join to this layer.
4. Choose the **FID** attribute as the field in the table to base the join on.
5. Click **OK**. The Facility attributes will be joined to the Participant locations.
6. **Right-click** on the Participant Locations Layer and select **Data -> Export Data**.
 a. Choose this **layer’s source data for the coordinate system**.
 b. Specify the **Output Location**.
 c. Click **OK**.

A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest facility to each participant location.
STREET PATTERN
5.10 Average Census Block Area: See NEAT GIS Protocol 6.1 (2010 EAT-III)

This uses the existing NEAT GIS Protocol. Be sure to use the latest version--4.0 or later and preferably 5.0 or later--as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

5.11 Median Census Block Area: Based on NEAT GIS Protocol 6.2 but updated (2010 EAT-III)

This protocol combines both versions available in the TCWS Protocol 6.2 in versions up to 4.0. It was updated slightly in Version 1.3. Updated in version 2.0.

1. Basic Concept
 As with the average census block area, the median block area is an approximation for street pattern where bigger blocks have fewer streets and/or more culs-de-sac and, unless they also have many additional pedestrian routes, they will be harder to get around.

 This measure is not as easy to calculate as an average, because the calculation needs to be done partly in Excel.

2. Basic Formula
 Median Census Block Area = Median area for census blocks with a centroid falling within the measurement geography.

3. Detailed Formula
 Median Census Block Area = Median area for census blocks with a centroid falling within the measurement geography using census block data.

4. Comments and Explanations
 The centroid rule and the inconsistent centroid calculation issues in the previous protocol are the same for this one.

5. GIS Approach
 The GIS approach is to perform a spatial identity between the census block centroids and study sites. The attribute table of the resulting layer is imported into Microsoft Excel and summarized using the PivotTable feature. This creates a list of all the census blocks whose centroids are in a given study site. The median area can then be calculated automatically.

6. GIS Steps

 The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

 To complete this protocol you will need:
 1. Participant Buffer Layer (polygon)
 2. Census Block Layer (polygon)
3. Microsoft Excel

Calculate Census Block Areas:
1. Add the area fields to the Census Block Layer.
 a. Right-click on the Census Block Layer and select Open Attribute Table.
 b. Click on the Option button and select Add Field…
 c. Name the field Area and change the Type to Double.
 i. If a field named Area already exists, change the name in the Add Field… dialog box to something else.
 d. Click OK.
 e. Click on the Option button again and select Add Field…
 f. Name the field Hectares and change the Type to Double.
 i. If a field named Hectares already exists, change the name in the Add Field… dialog box to something else.
 g. Click OK.
2. Calculate the values for Area and Hectares
 a. For the Area field,
 i. Right-click the Area field in the Census Block Layer attribute table and select Calculate Geometry…
 ii. Set the Property: box to Area.
 iii. Set the Coordinate System to “Use coordinate system of the data source:”
 iv. Set the units to the desired type. For the Area attribute, square meters, miles, or feet is probably appropriate.
 v. Click OK.
 b. For the Hectares field,
 i. Right-click the Hectares field in the Census Block Layer attribute table and select Calculate Geometry…
 ii. Set the Property: box to Area.
 iii. Set the Coordinate System to “Use coordinate system of the data source:”
 iv. Set the Units to Hectares [ha].
 v. Click OK.

Create Census Block centroid layer:
1. Open ArcToolbox by clicking on the icon.
2. Navigate to the Feature to Point tool (Data Management -> Features). Double-click on the tool to open it.
3. Click on the down arrow in the Input Features box and select Census Block Layer from the list of layers.
4. Specify the name and location of the output feature class.
5. Do NOT click the check box next to Inside. By not clicking on the check box, ArcGIS will create the actual geometric centroid of each census block. The centroid may not fall within its census block, but it is not forced inside the block.
6. Click OK. The centroid layer will be created and added to the Map Document.

Intersect the Census Block centroids with the Participant buffer Layer:
1. Add the Participant buffer Layer to the Map Document if it is not there already.
2. Open ArcToolbox by clicking on the icon.
3. Navigate to the Intersect tool (Analysis Tools -> Overlay). Double-click on the tool to open it.
4. Click on the down arrow in the Input Features box and select the Census Block centroid layer from the list of layers.
5. Click on the down arrow in the Identity Features box and select the Study-Site layer from the list of layers.
6. Specify the name and location of the output feature class.
7. Set the JoinAttributes option to ALL.
8. Set the XY Tolerance to 0 and leave the Keep Relationships check box unchecked.
9. Click OK.
10. A feature class containing the census block centroids with the appropriate study-site attributes attached will be created and added to the Map Document. If a census block centroid intersects with two or more overlapping
study-sites, the output feature class will contain one record for each study-site with which the centroid intersected.

Import data into Microsoft Excel:
1. Right-click on the layer created in the previous Identify step and select Open Attribute Table.
2. Click on the Option button and select Export.
3. Set the Export: box to All Records. Then, specify a name and location for the output DBF file.
4. Click OK.
5. Open Microsoft Excel and then open the DBF file created in the previous step.
6. Open a blank Microsoft Excel workbook and copy and paste all the data from the DBF file into the workbook.
7. From the Data menu, select PivotTable and PivotChart Report…
8. Select all the data in the workbook for the PivotTable and click Next. Then click Finish to create the Pivot Table.
9. From the PivotTable Field List, drag and drop the field containing the unique study-site ID onto the large window where it says Drop Column Fields Here.
10. From the PivotTable Field List, drag and drop the field containing the unique Census block centroid ID onto the large window where it says Drop Row Fields Here.
11. From the PivotTable Field List, drag and drop the field containing the Census Block Hectares values onto the large window where it says Drop Data Items Here.
12. Find the row beneath the last row containing any values (each column will have a different number of values depending on how many census block centroids were found in each measurement geography).
13. Calculate the median of all cells in each column. This will provide the median census block size, in hectares, for the census blocks whose centroids fall within a study-site.

5.12 Number of Access Points (LEAN version) (2010 EAT-III)

This simplifies the alternate access point calculation in NEAT GIS Protocol 6.4, which relies heavily on the hand-removal of parkway (at-grade divided roads) and interstate highways from the analysis. This is useful for smaller studies but very time intensive. Instead of examining each study-site and removing parkways and interstate highways, this protocol removes interstate highways from the Road Centerline Layer before creating the access points. Since identifying the parkways and at-grade divided roads for every study-site will be too time-consuming, they are left in the Road Centerline Layer. Updated in versions 2.0 and 2.1 (including substantial changes to the GIS steps).

1. Basic Concept
Access points are a measure of the amount of connection an area has to its surroundings.

At its most extreme, one can imagine a gated neighborhood, inside which the neighborhood had small blocks and a highly connected street pattern, but had only one way in and out. In this case, walking to destinations outside the development would be made far more complex. Access point measures create a measurement geography, generally a grid cell, and measure how porous its edges are (Southworth 1997, McNally and Kulkarni 1997, 109).

2. Basic Formula
Number of Access Points = Number of times a road crosses the edge of the measurement geography.

3. Detailed Formula
Number of Access Points = Number of times a road crosses the edge of the measurement geography with divided at-grade roads counted once and limited access highways excluded.
Fig. 6.2. Access points are points of intersection between road centerlines and site boundaries excluding points resulting from the intersections of site boundaries with Interstates, on- and off-ramps, and other limited access highways.

In the diagram to the left, the four green points are access points created by the intersection of the site boundary and an Interstate and its on- and off-ramps, and therefore are excluded from the analysis. The red point is a valid access point.

Fig. 6.3. Site boundary intersections with divided at-grade roads, such as parkways, are also counted once (as one access point) instead of twice. The green point in the diagram to the left is half of a set of paired access points created by the intersection of the site boundary and a divided parkway. Only the red access points are included in the analysis.

Fig. 6.4. Many access points, as measured, are somewhat marginal in their quality. That is, these points may exist but not provide significant access to the site, or may fall just inside the site boundary and therefore not be counted (see examples below). The red point in the middle of the image is technically an access point because the road centerline just crosses the site boundary, even though it provides no significant access to the site. However, it is extremely complex to develop rules to exclude such points—see next image for more examples.
4. Comments and Explanations
None.

5. GIS Approach
Interstates and access ramps were removed from the road centerline layer. Then a point file was created that contained all points where road centerlines intersected site boundaries. The total number of access points for each study site was summed.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To complete this protocol you will need:
1. Participant buffer Layer (polygon)
2. Road Centerline Layer (polyline)

Remove Interstate Highways and Access Ramps from the Road Centerline Layer:
1. Right-click on the Road Centerline Layer and select Properties.
2. Click on the Definition Query tab.
3. Construct an SQL query that eliminates the Interstate Highways and Access Ramps from the layer.
 b. Click OK.
4. The result of the SQL query will be a Road Centerline Layer without Interstate Highways or Access Ramps.

Create the Access Point Layer:
1. Click on the Add Data icon and load the Road Centerline Layer and Study-Site Layer to the Map Document.
2. Open ArcToolbox by clicking on the icon.
3. Navigate to the Intersect tool (Analysis Tools -> Overlay) and open the tool by double-clicking on it.
4. Click on the down-arrow by the Input Features box and select the Study-Site Layer.
5. Again, click on the down-arrow by the Input Features box and select the Road Centerline Layer.
6. Specify a name and location for the output layer.
7. Set the JoinAttributes option to ALL.
8. Accept the XY Tolerance default.
9. Set the Output Type to POINT. This will generate a point layer containing the intersections of the study-sites with the road centerlines.
10. Click OK.

Summarize Access Point Counts for Study-Sites:
1. If the Participant buffer Layer does not have unique IDs or names for each site, create them now.

2. Use the Summarize function to count the number of access points for each study-site
 a. Right-click on the Study-Site Layer and select Open Attribute Table
 b. In the attribute table, right-click on the column that contains the unique ID for each study site and select Summarize… from the context menu.
 c. Accept the defaults for 1. Select a field to summarize: and 2. Choose one or more summary statistics to be included in the output table:
 d.
 e. Specify the location and name of the output layer.
 f. Click OK.

3. The output layer will contain one polygon for each study-site. One of the attributes of this layer will be the number of access points falling inside the study-site.

5.13 Road Length per Unit Area (LEAN Version) (2010 ECHO)

This simplifies the alternate NEAT GIS Protocol 6.5, which relies heavily on the hand-removal of parkways (at-grade divided roads) and interstate highways from the analysis. Instead of examining each study-site and removing parkways and interstate highways, this protocol removes interstate highways from the Road Centerline Layer before intersecting the roads with the study-sites. Since identifying the parkways and at-grade divided roads for every study-site will be too time-consuming, they are left in the Road Centerline Layer.

1. Basic Concept

Road length per hectare is related to both block size and connectivity.

The next version of these protocols will contain more detail about earlier uses of this measurement.

2. Basic Formula

Road Length per Unit Area = Length of road with both interstates and ramps removed and divided roads averaged, per measurement area.

3. Detailed Formula

Road Length per Unit Area = Length of road with both interstates and ramps removed and divided roads averaged, per measurement area with water removed from land area calculation. Road length uses the TLG/Metropolitan Council data.

4. Comments and Explanations

Road lengths are simply the sums of the lengths of all road centerlines bounded by the study sites. Similar to the process used for access points, we ignored non-pedestrian lengths by removing Interstates and on- and off-ramps from our calculations. Also, we removed one of each pair of centerlines from all parkways and other divided at-grade roads in order to count their lengths once instead of twice.

Once this was done we used the area of each site to calculate the road length per hectare figures for each site.
5. GIS Approach
Delete all Interstates and on- and off-ramps. Intersect the roads layer with the measurement geographies. Recalculate the length of the road segments. Summarize the intersected layer by the measurement geography ID, calculating the sum of the Length field in the process. Divide the resulting sum of road lengths by the area in hectares of the associated measurement geography.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.2.
To follow this protocol you will need:
1. Participant buffer Layer (polygon)
2. Road Centerline Layer (polyline)
3. The protocol for determining Net Land Area (without water)

Determine the Net Land Area (without water) for each Study-Site:
1. Complete protocol 2.1 (Net Land Area without water)

Remove Interstate Highways and Access Ramps from the Road Centerline Layer:
1. Right-click on the Road Centerline Layer and select Properties.
2. Click on the Definition Query tab.
3. Construct an SQL query that eliminates the Interstate Highways and Access Ramps from the layer.
 a. The SQL query should be: \[F_CLASS\] <> 'A10' AND \[F_CLASS\] <> 'A15' AND \[F_CLASS\] <> 'A63'
 b. Click OK.
4. The result of the SQL query will be a Road Centerline Layer without Interstate Highways or Access Ramps.

Intersect Road Centerlines and Study-Sites and calculate road lengths:
1. Click on the Add Data icon and load the Road Centerline Layer and the Study-Site Layer.
2. Open ArcToolbox by clicking on the icon.
3. Navigate to the Intersect tool (Analysis Tools -> Overlay) and open the tool by double-clicking on it.
4. Click on the down-arrow by the Input Features box and select the Study-Site Layer.
5. Again, click on the down-arrow by the Input Features box and select the Road Centerline Layer.
6. Specify a name and location for the output layer.
7. Set the JoinAttributes option to ALL.
8. Accept the XY Tolerance default.
9. Set the Output Type to LINE. This will generate a line layer containing the intersections of the study-sites with the road centerlines.
10. Click OK. A new output layer containing only road segments intersecting with study-sites will be added to the Map Document. If a road segment falls in overlapping study-sites, the output layer will contain two records, one for each study-site, for the segment.
11. Recalculate the length of the road segments in the newly intersected layer.
 a. Right-click on the new layer and select Open Attribute Table.
 b. Click on the Option button and select Add Field…
 c. Name the field Length and change the Type to Double.
 i. If a field named Length already exists, change the name in the Add Field… dialog box to something else.
 d. Click OK.
 e. Right-click the Length field in the attribute layer and select Calculate Geometry…
 f. Set the Property: to Length.
 g. Set the Coordinate System to “Use coordinate system of the data source.”
 h. Set the units to the desired type.
 i. Click OK. The lengths of the road segments will be calculated.

Summarize Road Lengths:
1. Right-click the new Roads Layer and select Open Attribute Table.
Calculate Road Length per Hectare:
1. Open the table created in the previous step.
2. Click on the Option button and select Add Field…
3. Name the field Len<Buffer Type><Distance> and change the Type to Double.
4. Click OK.
5. Right-click on the Len<Buffer Type><Distance> field and select Field Calculator…
6. In the Field Calculator, click Sum_Length, then click the / button, and finally click Avg_Area.
7. Click OK.
8. The result is a field called Len<Buffer Type><Distance> that contains the road length per unit area in a study-site.

The Buffer types are N (network) or S (straightline) and Distance options need to be added.

5.14 Intersections per Unit Area (LEAN version) (2010 ECHO)

Note: This is based on the TCWS protocol 6.6 but has of version 1.2 has been refined to limit the need for data cleaning. However, please note that it is NOT yet complete. To use, the protocol needs to be revised to remove interstate highways.

1. Basic Concept
The number of intersections per hectare is a measure of the connectivity of the street network (Cervero and Kockelman 1996, 8; McNally and Kulkarni 1997, 109). As can be seen from this and later protocols, however, judging an intersection can be complex, particularly in older areas, where intersections are not regularly spaced, road rights of way have varying sizes, and centerlines may be slightly offset within the right of way, creating false positives in terms of intersection counts (see below for more detail).
This is obviously an area where more research would help, to discover how much of a jog in an intersection is needed before it is perceived as two intersections. In the absence of such research, we spent some time observing difficult cases in the field.

While we created many more complicated versions of intersection measures, the results from the Twin Cities Walking Study were substantially similar for each variant and so we recommend using this one as it is the simplest.

2. Basic Definition
Intersections per Unit Area = Number of intersections per unit land area.

3. Detailed Definition
Intersections per Unit Area = Number of intersections per unit land area with interstate highways removed.
4. Comments and Explanations
Early versions of NEAT GIS protocol 6.6, Intersections per Unit Area, removed Interstate highways from a roads dataset, then calculated all intersections using a custom ArcGIS script, and finally created single intersections in places where roads converge but do not perfectly align. The LEAN version of this protocol simplifies the TCWS protocol. It uses the intersections generated when the user creates the road network dataset and it does not create single intersections in places where roads converge but do not perfectly align.

5. GIS Approach
The GIS approach uses a spatial join to count the number of intersections within a study-site. The intersections come from the Junctions feature class that is created when the road network dataset is created.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.2.

To follow this protocol you will need:
1. Participant buffer Layer (polygon)
2. Road Network Dataset, particularly the Junctions feature class
3. The protocol for determining Net Land Area (without water)

Summarize Intersection Counts for Study-Sites:
1. Start ArcMap.
2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Road Network dataset location.
 b. Click on the Network dataset and click Add to add the Network dataset to ArcMap.
 c. Click Yes to add all the feature class that participate in the network to the map.
3. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Participant buffer polygon layer to be used for the analysis.
 b. Click on the Study-Site layer and click Add to add it to ArcMap.
4. Right-click on the Participant buffer layer and choose Joins and Relates -> Join…
5. Under the dropdown box labeled What do you want to join to this layer? choose Join data from another layer based on spatial location.
6. In Step 1 of the dialog box, choose the Junctions layer.
7. In Step 2, click the button to choose Each polygon will be given a summary of the numeric attributes…
8. In Step 3, choose a name and location for the output layer.
9. Click OK.
10. The output layer now contains a Count field with the number of intersections found in each feature of the Study-Site layer.

Calculate the intersections per net land area:
1. Determine the Net Land Area for the Study-Site layer if it hasn’t already been calculated.
2. Right-click on the output layer from the spatial join and select Open Attribute Table.
3. Click Options and choose Add Field.
4. Name the field IntDens and change the type to Double.
5. Click OK to add the field.
6. In the Table of Contents, right-click on the output layer from the spatial join and choose Joins and Relates -> Join.
7. In the dropdown box, choose to Join attributes from a table.
8. In Step 1, choose to base the join on the field containing the unique ID of the study-sites.
9. In Step 2, load the table from the result of the Net Land Area protocol.
10. In Step 3, choose the field in the Net Land Area layer’s table containing the unique ID of the study-sites.
11. Click OK.
12. Open the Attribute Table of the output layer from the spatial join, which now has the net land area table joined to it.
13. Right-click on the IntDens field and choose Field Calculator…
14. In the Field Calculator dialog box, click the Count field, then click the / button, and finally click the name of the field containing the net land area.
15. Click OK.

The field now contains the density of intersections (number of intersections divided by the net land area in whichever units you used).

OTHER BUILT-ENVIRONMENT RELATED/SPATIAL VARIABLES

5.15 Proportion of High Functional Classifications [i.e. busy streets]: See NEAT GIS Protocol 7.1 (2010 EAT-III & ECHO)

This uses the existing NEAT GIS Protocol. Be sure to use the latest version—4.0 or later and preferably 5.0 or later—as these versions correct errors, simplify some steps, or at least indicate where protocols are in need of revision.

5.16 Distance to Nearest Park (2010 EAT-III & ECHO)

Note: The GIS steps were updated in Version 1.3.

1. Basic Concept
This is related to one question in the TREC-IDEA study:

- SS179 About how long would it take to get from your home to the nearest park if you walked? (Adapted from NEWS B21 (14))

It is related to the TCWS Protocol 5.14 that calculates distance to the nearest facilities of various types.

2. Basic Definition
Distance to Nearest Park = Straight line or network distance to the nearest part of the park border.

3. Detailed Definition
Distance to Nearest Park = Straight line or network distance to the nearest part of the park border where that is operationalized as the nearest park vertex.

4. Comments and Explanations
The tricky component of this measure is that a park is an area and so that until Version 9.1 or 9.2, the GIS program had difficulty finding the closest point as it slowed down trying to find the exact nearest boundary point of the park. In newer version of ArcGIS we can make this measure directly.
5. GIS Approach
The GIS approach is to use the Find Closest Facility option in the Network Analyst Extension of ArcGIS 9.2 to find the closest park to a participant’s home or school. The point layer containing parks are the “facilities” in Network Analyst, and the participant locations are the “incidents” in Network Analyst. A street network is required for calculating the distance between parks and participant locations.

In the Network Analyst Extension, specify the “facilities” and the “incidents” and solve for the closest facility to each incident. Attach the distance to the closest facility to each incident.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To complete this protocol you will need:
- Road Network dataset
- Participant Locations (point)
- Regional Parks (polygon)
- Network Analyst Extension for ArcGIS 9.2

Convert the Regional Parks (polygon) layer to a point layer
1. Add the Regional Parks (polygon) layer to an ArcMap Document.
2. Open the ArcToolbox by clicking on the icon and navigate to the Feature Vertices to Points tool (Data Management Tools -> Features -> Feature Vertices to Points). Open the tool by double-clicking it.
 a. In the Input Features drop-down box, select the Regional Parks (polygon) layer.
 b. Specify a name and location for the output feature class.
 c. Set the Point Type (optional) to ALL.
 d. Click OK.
 e. This tool will create an output layer containing all vertices in the Regional Parks polygons. Each vertex will contain the attributes of the park from which it was derived. Please note that this output layer will contain many thousands of points.

Calculate the network distance to the nearest park
1. Start ArcMap
2. On the Main Menu, click Tools and click on Extensions
 a. Check Network Analyst Extension
 b. Click Close
3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap.
 c. Click Yes to add all the feature classes that participate in the network to the map.
4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Point Layers to be used for the analysis, in this case the Participant locations and Regional Parks points (created in the previous step).
 b. Select the Point Layers and click Add to add them to ArcMap.
5. If the Participant IDs and Regional Parks IDs are already assigned, go the next step. Otherwise, in the Table of Contents, right-click on the Participant locations point layer and select Open Attribute Table.
 a. In the Attribute Table,
 i. Click Options and select Add Field…
 ii. Add Par_ID_T as Text
 1. Type Par_ID_T in the Name field
 2. Select Text as Type
3. Set the Length to 20
4. Click OK

iii. Click Options and select Add Field…
iv. Add Par_ID as Integer
 1. Type Par_ID in the Name field
 2. Select Short Integer as Type
 3. Accept default (0) for Precision
 4. Click OK
v. Right-click on the Par_ID field and select Field Calculator…
 1. Set the Par_ID equal to [FID] + 1
 2. Click OK
vi. Right-click on the Par_ID_T field and select Field Calculator…
 1. Set the Par_ID_T equal to Par_ID
 2. Click OK

b. Right-click on the Regional Parks point layer and select Open Attribute Table.
 i. In the Attribute Table,
 1. Click the Options button and select Add field…
 2. Add Pk_ID_T as Text
 a. Type Pk_ID_T in the Name field
 b. Select Text as Type
 c. Set the Length to 20
 d. Click OK
 3. Click the Options button and select Add Field
 4. Add Pk_ID as Integer
 a. Type Pk_ID in the Name field
 b. Select Short Integer as Type
 c. Accept default (0) for Precision
 d. Click OK
 5. Right-click on the Pk_ID field and select Field Calculator…
 a. Set the Pk_ID equal to [FID] + 1
 b. Click OK
 6. Right-click on the Pk_ID_T field and select Field Calculator…
 a. Set the Pk_ID_T equal to Pk_ID
 b. Click OK

6. Load the Network Analyst toolbar
 a. One the Main Menu, click on View
 b. Click on Toolbars
 c. In the side menu, click Network Analyst to add the Network Analyst toolbar to ArcMap
7. Load the Network Analyst Window
 a. Click on the Show/Hide Network Analyst Window to open the window
8. Create a New Closest Facility
 a. Click on the Network Analyst button on the Network Analyst toolbar
 b. Select New Closest Facility from the dropdown window
 c. The Table of Contents and the Network Analyst Window will now contain a Closest Facility layer,
 which contains Facilities, Incidents, Barriers, and Routes categories.
9. Load the Regional Parks points into the Facilities category in Network Analyst
 a. In the Network Analyst window, right-click Facilities and click Load Locations. This will open the
 Load Locations Window
 b. In the Load Locations Window
 i. Select the point layer containing the Regional Parks points from the drop-down box next to
 Load From. If the required point layer is not in the drop-down box, click on the Browse for
 Point Features to Load icon and navigate to the point layer.
 ii. Choose the Pk_ID as the Sort field.
 iii. Choose the Pk_ID_T for the Name property under Locational Analysis properties.
 iv. Accept the default for the other Locational Analysis properties.
Choose a suitable **Search Tolerance** for the **Location Position**. Since the Regional Parks point layer contains so many points, we recommend constraining the tolerance to approximately 200 meters. [Note this was reduced in version 2.0]

Click **OK**. This process will take two to three hours to finish.

To verify all Regional Parks points were located on the network dataset, do the following.

i. Right-click on the **Facilities** in the **Network Analyst Window**, **Open Attribute Table** and sort descending on the **STATUS** column. The **Not Located** features should be sorted to the top.

ii. It is likely that some Regional Parks points will be not be located because they fall outside of the tolerance. Those points usually fall along the interiors of parks and can safely be ignored for this analysis.

10. **Load the Participant locations into the Incidents category in Network Analyst.**
 a. In the Network Analyst window, right-click **Incidents** and click **Load Locations**. This will open the Load Locations Window.
 b. In the Load Locations Window
 i. Select the point layer containing the **Participant locations** from the drop-down box next to **Load From**. If the required point layer is not in the drop-down box, click on the **Browse for Point Features to Load** icon and navigate to the point layer.
 ii. Choose the **Par_ID** as the **Sort** field.
 iii. Choose the **Par_ID_T** for the **Name** property under **Locational Analysis** properties.
 iv. Accept the default for the other **Locational Analysis** properties.
 v. Choose a suitable **Search Tolerance** for the **Location Position**. If features cannot be located in the network dataset, this tolerance may need to be increased.
 vi. Click **OK**.
 c. To verify all Participant locations were located on the network dataset, do one of the following. If any feature has a status of **Not Located**, the search tolerance in 10.b.v may need to be increased or the feature reviewed for correct location.
 i. For small datasets, scroll through the resulting list of Incidents in the **Network Analyst Window**, looking for features with RED questions marks.
 ii. For large datasets, it may be easier to right-click on the **Incidents** in the **Network Analyst Window**, **Open Attribute Table** and sort descending on the **STATUS** column. The **Not Located** features should sort to the top.

11. Set the properties for the analysis
 a. In the Table of Contents, right-click **Closest Facility** and click **Properties**. This will open the Closest Facility properties dialog box.
 b. Click on the **Analysis Settings Tab**
 i. Choose **Length (meters)** for **Impedence**
 ii. Choose **None** for **Default Cutoff Values**
 iii. Set **Facilities to Find** to 1
 iv. Set **Travel From** option to **Incident to Facility**
 v. Set **Allow U-Turns** to **Everywhere**
 vi. Set **Output Shape Type** to **True Shape**
 vii. Check the box to **Ignore Invalid Locations**
 c. Click **OK**.

12. To calculate the closest Regional Park point to a Participant location, click the **Solve Button** on the Network Analyst Toolbar.
 a. When Network Analyst has solved the calculations, the **Routes** layer will be populated with line segments joining each participant location to its closest Regional Park point. The Routes Attribute table contains the unique IDs for the participants and the regional parks along with the network length separating them and the route name (a concatenation of the participant ID and the regional park point ID).

13. Join the Regional Park points and the Participants to the results of Find Closest Facility analysis
 a. Right-click the **Routes** layer.
 b. Select **Joins and Relates** and then click **Join**.
 i. Choose **Facility_ID** as the field to base the join on
Choose the Regional Parks point layer as the Table to Join to this layer.

Choose the Pk_ID as the field in the table to base the join on.

Click OK.

c. Right-click on the Routes layer.
d. Select Joins and Relates and then click Join.

i. Choose Incident_ID as the field to base the join on.

ii. Choose the Participant layer as the Table to Join to this layer.

iii. Choose the Par_ID as the field in the table to base the join on.

iv. Click OK.

e. Right-click the Routes layer

f. Select Data and then click Export Data

i. Choose this layer’s source data for the coordinate system

ii. Specify the Output Location

iii. A new shapefile will be created in the output location. This shapefile will contain the routes from each participant location to the nearest regional park. Each route will contain the attributes of the participant and the nearest regional park.

Calculate straight-line distance to nearest park

To follow this protocol, you will need:
1. Participant Locations Point Feature Layer for incidents (origins)
2. Regional Parks Point Feature Layer for facilities (destinations), created in previous steps

Calculate the straight-line distance to the nearest park

17. Click the Add Data button on the Standard Toolbar.

a. Navigate to the Point Layers to be used in the analysis, in this case the Participant locations and the Regional Parks point feature layer.

b. Select the Point Layers and click Add to add them to ArcMap.

18. Open ArcToolbox by clicking on the icon.
19. Navigate to the Near tool (Analysis Tools -> Proximity) and double-click to open it.
20. Click the down-arrow in the Input Features box and select the Participant Locations feature layer.
21. Click the down-arrow in the Near Features box and select the Regional Parks Point feature layer.
22. Leave the Search Radius (optional) box empty. This will guarantee that every Participant Location will have it nearest regional park point found.
23. Leave the Location (optional) and Angle (optional) check boxes unchecked.
24. Click OK to execute the tool.
25. The tool will find the nearest regional park point to each Participant Location and measure the straight-line distance between those points. The tool will add two attributes to the participant location attribute table, NEAR_DIST and NEAR_FID. NEAR_DIST will contain the distance, in the units of the Layers. NEAR_FID will contain the feature ID of the closest regional park point. Use the NEAR_FID attribute to join the Regional Park Point Layer to the participant location layer to determine the characteristics of the nearest regional park point.

Join the Participant Location Layer to the Regional Park Point Layer using the NEAR_FID attribute.

1. Right-click on the Participant Location layer and select Joins and Relates -> Join…
2. Choose NEAR_FID as the field to base the join on.
3. Choose the Regional Park Point layer as the Table to Join to this layer.
4. Choose the FID attribute as the field in the table to base the join on.
5. Click OK. The Regional Park Point attributes will be joined to the Participant locations.
6. Right-click on the Participant Locations Layer and select Data -> Export Data…

a. Choose this layer’s source data for the coordinate system.

b. Specify the Output Location.

c. Click OK.
A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest regional park to each participant location.

5.17 Distance to Nearest Gym or Fitness Facility (2010 EAT-III & ECHO)

Note: The steps were updated in Version 1.3 and 2.0.

1. Basic Concept

This is a fairly simple distance to a nearest parcel (centroid) calculation. What is most important is defining a gym or fitness facility as these can be public or private. It is related to the following TREC-IDEA question:

- SS181 About how long would it take to get from your home to the nearest gym or fitness facility if you walked? (Adapted from NEWS B23 (14))

The issue is defining a gym or fitness facility. Looking at the list below (which does not include dance studios) it can be seen there are a variety of definitions but the best fit is: 71394 Fitness and Recreational Sports Centers.

<table>
<thead>
<tr>
<th>2002 NAICS</th>
<th>2002 NAICS U.S. Description (with link to definition)</th>
<th>1987 SIC</th>
<th>1987 U.S. SIC Description (with link to definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7139</td>
<td>Other Amusement and Recreation Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71391</td>
<td>Golf Courses and Country Clubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>713910</td>
<td>Golf Courses and Country Clubs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71392</td>
<td>Skiing Facilities</td>
<td>7992</td>
<td>Public Golf Courses</td>
</tr>
<tr>
<td>713920</td>
<td>Skiing Facilities</td>
<td>7997</td>
<td>Membership Sports and Recreation Clubs (Golf clubs)</td>
</tr>
<tr>
<td>71393</td>
<td>Marinas</td>
<td>7999</td>
<td>Amusement and Recreation Services, NEC (Skiing facilities)</td>
</tr>
<tr>
<td>713930</td>
<td>Marinas</td>
<td>4493</td>
<td>Marinas</td>
</tr>
<tr>
<td>71394</td>
<td>Fitness and Recreational Sports Centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>713940</td>
<td>Fitness and Recreational Sports Centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>713941</td>
<td>Fitness and Recreational Sports Centers</td>
<td>7991</td>
<td>Physical Fitness Facilities</td>
</tr>
<tr>
<td>7139410</td>
<td>Fitness and Recreational Sports Centers</td>
<td>7997</td>
<td>Membership Sports and Recreation Clubs (Recreation clubs with facilities)</td>
</tr>
<tr>
<td>7139411</td>
<td>Fitness and Recreational Sports Centers</td>
<td>7999</td>
<td>Amusement and Recreation Services, NEC (Skiing facilities)</td>
</tr>
</tbody>
</table>
2. Basic Definition
Distance to Nearest Gym or Fitness Facility = Straight line or network distance to the centroid of the nearest Gym or Fitness facility.

3. Detailed Definition
Distance to nearest gym or fitness facility = Shortest straight line or network path between home or school and the nearest gym or fitness facility where gyms or fitness facilities are defined as the following NAICS codes in Business Analyst:

- 71394 Fitness and Recreational Sports Centers
- 71394001 through 71394028 in NAICS_EXT code

4. Comments and Explanations
This is done by using the OD Cost Matrix option in Network Analyst Extension or the Near Tool in ArcGIS 9.3.1. For network distance, a point layer, to which the shortest network distance is to be calculated, is specified as the “destination” layer and the point, from which the distance is to be calculated, serves as the origin.

For points that do not fall on the network, there is a dialog box when using this extension that allows the user to decide how far away from the network to search for points to use in the processing. Points outside that distance will not be used.

5. GIS Approach
The GIS approach is to use the OD Cost Matrix option in the Network Analyst Extension of ArcGIS 9.3.1 to find the closest gym or fitness facility to a participant’s home or school. The point layer containing gyms or fitness facilities are the “destinations” in Network Analyst, and the participant locations are the “origins” in Network Analyst. A street network is required for calculating the distance between gyms/fitness facilities and participant locations.

The approach for this measure is to load a set of origins and destinations, then use the OD Cost Matrix function in Network Analyst to calculate the network distance from each origin to the nearest destination.

6. GIS Steps
The following procedures were completed in ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:
1. Road Network dataset
2. Gym and Fitness Facility Point Feature Layer for destinations
3. Participants’ Locations Point Feature Layer for origins

Source: http://www.census.gov/epcd/naics02/N2SIC71.HTM#N713
4. **Network Analyst Extension** for ArcGIS 9.3.1

Query and extract data for Restaurants according to specified NAICS codes from the Business Analyst InfoUSA data, if the restaurant layer is not already prepared.

1. Start ArcMap

2. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Business Analyst data
 b. Click on the Business Analyst data and click Add to add the dataset to the Map document

3. Right-click the Business Analyst data and click Open Attribute Table
 a. Click on Options
 b. Click Select by Attributes
 i. Select Create a new selection as Method
 ii. Click on “NAICS_EXT” in the Attributes list and click on Unique values (since this can take substantial time, instead consider typing the codes as mentioned below)
 iii. Click the “=” operator
 iv. Click or Type ‘71394001’
 v. Click “OR” operator
 vii. Click Apply
 c. Right Click the Business Analyst data and click Data and then Export data
 i. Choose Selected Features for Export
 ii. Choose this layer’s source data for Use the same coordinate system as:
 iii. Navigate to the appropriate folder and give the output file an appropriate name for Output shapefile or feature class
 iv. Click OK
 v. Click Yes to add the data to the current data frame

Calculate the Network Distance to the nearest gym or fitness facility: Use LEAN Protocol 2.6 to determine the network distance to the nearest restaurant. The participant locations are the XXX and the gym and fitness facilities are the features of interest.

The length of the nearest distance segment from a participant’s location to the nearest gym or fitness facility is stored in the Total Length attribute.

C. **Straightline distance**

4. Open ArcToolbox, then click Analysis Tools
5. Click on Proximity Tools
6. Click on Near tool
 a. Navigate and Choose Participant Layer as the Input Features
 b. Navigate and Choose Gym or Fitness Facility layer as Near Features
 c. Click Ok

The straightline distance to nearest restaurant is stored in the attribute table under field name Near_Dist. The Near_FID field has the FID of the Nearest Gym or Fitness Facility.
5.18 Distance to Nearest Recreation Center, Community Center, or School (2010 EAT-III & ECHO)

Note: The steps were updated in Version 1.3. This protocol was updated in version 2.0.

1. **Basic Concept**
 This is a fairly simple distance to a nearest parcel (centroid) calculation. What is most important is finding data on such facilities. It is related to two questions in the TREC-IEAD and ECHO studies.

 - SS180 About how long would it take to get from your home to the nearest recreation center (community center, school in your neighborhood) if you walked? (Adapted from NEWS B22 (14))

 Again definitions are complex and might include:
 - 71394 [Fitness and Recreational Sports Centers](#)
 - 6111 [Elementary and Secondary Schools](#)

 However, the Twin Cities school data were best obtained from a public source.

2. **Basic Definition**
 Distance to Nearest Recreation Center, Community Center, or School = Straight line or network distance to the centroid of the nearest facility of that type.

3. **Detailed Definition**
 Distance to Nearest Recreation Center, Community Center, or School = Straight line or network distance to the centroid of the nearest facility of that type with data from Business Analyst and from The Lawrence Group (TLG) Geospatial Landmark data for schools. **Note, this is being updated to ensure that it works with the Business Analyst NAICS coding.**

4. **Comments and Explanations**
 The early versions used Dun and Bradstreet data that contained few elementary and secondary schools (369 total, but many of these addresses are for school district headquarters instead of actual schools); therefore, a new data source was required. NCompass Geospatial Landmark data, updated quarterly and available from the MetroGIS’ datafinder http://www.datafinder.org/metadata/tlg_landmarks.htm, contain 808 public and private elementary, middle, and high schools in 2007. We continued to use this source when we converted to Business Analyst.

 This is done by using the OD Cost Matrix option in Network Analyst Extension of or the Near Tool in ArcGIS 9.3.1. For network distance, a point layer, to which the shortest network distance is to be calculated, is specified as the “destination” layer and the point, from which the distance is to be calculated, serves as the origin.
For points that do not fall on the network, there is a dialog box when using this extension that allows the user to decide how far away from the network to search for points to use in the processing. Points outside that distance will not be used.

5. GIS Approach
The GIS approach is to use the OD Cost Matrix option in the Network Analyst Extension of ArcGIS 9.3.1 to find the closest gym or fitness facility to a participant’s home or school. The point layer containing recreation centers, community centers, or schools are the “destinations” in Network Analyst, and the participant locations are the “origins” in Network Analyst. A street network is required for calculating the distance between recreation centers/community centers/schools and participant locations.

The approach for this measure is to load a set of origins and destinations, then use the OD Cost Matrix function in Network Analyst to calculate the network distance from each origin to the nearest destination.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
The following procedures were completed in ArcMap (ArcInfo) 9.2.

To follow this protocol you will need:
1. **Road Network** dataset
2. **Recreation Center, Community Center, or School Point Feature Layer** for facilities (destinations)
3. **Participants’ Locations Point Feature Layer** for incidents (origins)

Merge the Recreation Center/Community Center points with the School points to create a single Recreation Center, Community Center, or School Point Feature Layer
1. Open **ArcToolbox**.
2. Navigate to the **Merge** tool (Data Management Tools -> General). Double-click on **Merge** to open the tool.
3. Click on the folder icon next to the **Input Datasets** box and navigate to the location of the School points. Click on the School points and click **OK** to add them to the tool.
4. Click on the folder icon again and navigate to the location of the Recreation Center/Community Center points. Click on the Recreation Center/Community Center points and click **OK** to add them to the tool.
5. Specify the name and location of the **Output Dataset**.
6. Click **OK** to execute the **Merge** tool.
7. When the Merge tool finished, the merged shapefile will be added to the Table of Contents. Use this merge dataset for all subsequent steps in this protocol.

Calculate the Network Distance to the nearest recreation center, community center, or school: Use LEAN Protocol 2.6 to determine the network distance to the nearest recreation center, community center, or school. The participant locations are the facilities and the recreation centers, community centers, and schools are the features of interest.

The length of the nearest distance segment from a participant’s location to the nearest recreation center, community center, or school is stored in the Total Length attribute.

D. **Straightline distance**
7. Open **ArcToolbox**, then click **Analysis Tools**
8. Click on **Proximity Tools**
9. Click on **Near** tool
5.19 Density/Number of Recreation Centers, Community Centers, or Schools (2010 EAT-III & ECHO)

This is new in version 2.1.

This is the density version of Protocol 5.18.

6. GIS Steps

The following procedures were completed in ArcGIS (ArcInfo) 9.3.1.

To follow this protocol, you will need:
1. Recreation Center, Community Center, or Schools Point Feature Layer
2. Participant Location Buffer Feature Layer

Spatially join the rec center/community center/schools point feature layer to the Participant buffers
1. Right-click the Participant buffer layer and select Joins and Relates → Join…
2. For the question “What do you want to join to this layer?”, select “Join data from another layer based on spatial location”
3. For “1. Choose the layer to join to this layer, or load spatial data from disk”, select the rec center/community center/schools point layer
4. For “2. You are joining: Points to Polygons”, select the radio button next to “Each polygon will be given a summary of the numeric attributes of the points that fall inside it, and a count field showing how many points fall inside it”
5. Specify the output location and shapefile name
6. Click OK to execute the spatial join

Calculate the density of rec centers, community centers, or schools in the buffer
1. Right-click on the output from the previous step and select Open Attribute Table
2. Click the Options button and select Add Field…
 a. For the Name, type RCCXXXX where XXXX is the buffer distance
 b. Set the Type to Integer
 c. Accept the defaults for Scale and Precision
 d. Click OK to add the attribute
3. Right-click on the RCCXXXX attribute and select Field Calculator…
 a. In the field calculator, construct the following query: [Count_]
 b. Click OK to execute the query
4. Click on the Options button and select Add Field…
 a. For the Name, type RCDXXXX where XXXX is the buffer distance
 b. Set the Type to Double
 c. Accept the defaults for Scale and Precision
 d. Click OK to add the attribute
5. Right-click on the RRDXXXX attribute and select Field Calculator…
 a. In the field calculator, construct the following query: [RCCXXXX] / [Hectares]
 b. Click OK to execute the query
The RRDXXXX field contains the density of recreation centers, community centers, or schools per hectare in the buffer around the participant location. Repeat these steps for all other network and straightline participant buffers.

5.20 Distance to Nearest Bicycle or Pedestrian Trail Access Point (2010 EAT-III)

Note: This protocol was updated in Version 1.3. It was renumbered in version 2.0—previously it was 5.19. This protocol was updated in version 2.0.

1. Basic Concept
Again, another distance to nearest feature, except in this case it is a distance to a line (a trail). It is related to the following question in the TREC-IDEA study:

- SS 183 There are bicycle or pedestrian trails in or near my neighborhood that are easy to get to (E3 NEWS (14))

2. Basic Definition
Distance to Nearest Bicycle or Pedestrian Trail = Straight line or network distance to the closest intersection with a facility of that type.

3. Detailed Definition
Distance to Nearest Bicycle or Pedestrian Trail = Straight line or network distance to the closest intersection with a facility of that type using trail data from the Metropolitan Council.

4. Comments and Explanations
Bicycle trails and pedestrian trails were obtained from the Metropolitan Council’s DataFinder website. The bicycle trails metadata can be found at http://www.datafinder.org/metadata/bikeways.htm and the pedestrian trails metadata can be found at http://www.datafinder.org/metadata/trails_regional.htm.

The pedestrian trail dataset contains trails that exist, under acquisition, planned, or proposed. This protocol only uses trails that exist.

The bicycle trail dataset contains trails, bike lanes, and paved shoulders. This protocol only uses trails.

5. GIS Approach
The GIS approach is to use the Find Closest Facility option in the Network Analyst Extension of ArcGIS 9.2 to find the closest bicycle or pedestrian trail to a participant’s home or school. The point layer containing bicycle or pedestrian trails are the “facilities in Network Analyst, and the participant locations are the “incidents” in Network Analyst. A street network is required for calculating the distance between bicycle or pedestrian trails and participant locations.

In the Network Analyst Extension, specify the “facilities” and the “incidents” and solve for the closest facility to each resident. Attach the distance to the closest facility to each incident.
The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To complete this protocol you will need:
1. Road Network dataset
2. Participant Locations (point)
3. Bicycle or Pedestrian Trails (line)
4. Network Analyst Extension for ArcGIS 9.2

Select the existing pedestrian trails from the full pedestrian trails dataset
1. Start ArcMap.
2. Click the Add Data button on the Standard Toolbar
 a. Navigate to the location of the pedestrian trails.
 b. Click on the pedestrian trails dataset and click Add to add the dataset to ArcMap.
3. Use the Select by Attributes… dialog to select Existing pedestrian trails.
 a. Click the Selection menu item and then click Select by Attributes…
 b. Select the Pedestrian Trails from the dropdown box next to Layer:
 c. From the Fields: box, double-click on “Status”.
 d. Then, click the = button.
 e. Click the Get Unique Values and then double click ‘Existing’.
 f. Click Apply to execute the query and then click Close.
4. Right-click on the Pedestrian Trails layer in the Table of Contents and select Data…-> Export Data.
 a. Choose this layer’s source data for the coordinate system.
 b. Specify the Output Location.
 c. Click OK.
 d. If ArcMap prompts you to add the exported shapefile to the Table of Contents, click Yes.

Select the trails from the full bicycle trails dataset
7. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the location of the bicycle trails.
 b. Click on the bicycle trails dataset and click Add to add the dataset to ArcMap.
8. Use the Select by Attributes… dialog to select only trails.
 a. Click the Selection menu item and then click Select by Attributes.
 b. Select the Bicycle Trails from the dropdown box next to Layer:
 c. From the Fields: box, double-click “TYPE”.
 d. Then, click the = button.
 e. Click the Get Unique Values button.
 f. Double-click ‘Non-paved Trail’.
 g. Click the OR button and then double-click “TYPE”.
 h. Click the = button, and then double-click ‘One-way Paved Trail’.
 i. Click the OR button and then double-click “TYPE”.
 j. Click the = button, and then double-click ‘Paved Trail’.
 k. Click Apply to execute the query and then click Close.
9. Right-click on the Bicycle Trials layer in the Table of Contents and select Data…-> Export Data.
 a. Choose this layer’s source data for the coordinate system.
 b. Specify the Output Location.
 c. Click OK.
 d. If ArcMap prompts you to add the exported shapefile to the Table of Contents, click Yes.

Merge the Bicycle Trails and Pedestrian Trails datasets together to create one dataset.
1. Open ArcToolbox.
2. Navigate to the Merge tool (Data Management Tools -> General). Double-click on Merge to open the tool.
 a. Click on the down arrow by Input Datasets: and select the Pedestrian Trails dataset created above.
 b. Again, click on the down arrow by Input Datasets: and select the Bicycle Trails dataset created above.
 c. Specify the Output Dataset.
 d. Click OK to execute the Merge tool.
3. When the Merge tool finishes, the merged shapefile will be added to the Table of Contents. Use this merged dataset for all subsequent steps in this protocol.

Convert the Bicycle or Pedestrian Trails layer to a point layer.
1. Open the ArcToolbox by clicking on the icon and navigate to the Feature Vertices to Points tool (Data Management Tools -> Features -> Feature Vertices to Points). Open the tool by double-clicking it.
 a. In the Input Features drop-down box, select the Bicycle or Pedestrian Trails (line) layer.
 b. Specify a name and location for the output feature class.
 c. Set the Point Type (optional) to ALL.
 d. Click OK.
 e. This tool will create an output layer containing all vertices in the Bicycle or Pedestrian Trails lines. Each vertex will contain the attributes of the bicycle or pedestrian trail from which it was derived.

Calculate the network distance to the nearest bicycle or pedestrian trail.
1. Start ArcMap.
2. On the Main Menu, click Tools and click on Extensions.
 a. Check Network Analyst Extension.
 b. Click Close.
3. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Network Dataset location.
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap.
 c. Click Yes to add all the feature classes that participate in the network to the map.
4. Click the Add Data button on the Standard Toolbar.
 a. Navigate to the Point Layers to be used for the analysis, in this case the Participant locations and Bicycle or Pedestrian Trail points (created in the previous step).
 b. Select the Point Layers and click Add to add them to ArcMap.
5. If the Participant IDs and Bicycle or Pedestrian Trail IDs are already assigned, go the next step. Otherwise, in the Table of Contents, right-click on the Participant locations point layer and select Open Attribute Table.
 a. In the Attribute Table,
 i. Click Options and select Add Field...
 Add Par_ID_T as Text.
 1. Type Par_ID_T in the Name field.
 2. Select Text as Type.
 3. Set the Length to 20.
 4. Click OK.
 ii. Click Options and select Add Field...
 Add Par_ID as Integer.
 1. Type Par_ID in the Name field.
 2. Select Short Integer as Type.
 3. Accept default (0) for Precision.
 4. Click OK.
 iii. Right-click on the Par_ID field and select Field Calculator.
 1. Set the Par_ID equal to [FID] + 1.
 2. Click OK.
 iv. Right-click on the Par_ID_T field and select Field Calculator...
 1. Set the Par_ID_T equal to Par_ID.
 2. Click OK.
 b. Right-click on the Bicycle or Pedestrian Trail point layer and select Open Attribute Table.
Click the **Options** button and select **Add field**

i. **Add Bp_ID_T as Text.**
 1. Type `Bp_ID_T` in the Name field.
 2. Select Text as Type.
 3. Set the Length to 20.
 4. Click OK.

ii. Click the **Options** button and select **Add Field**

iii. **Add Bp_ID as Integer.**
 1. Type `Bp_ID` in the Name field.
 2. Select Short Integer as Type.
 3. Accept default (0) for Precision.
 4. Click OK.

iv. Right-click on the Bp_ID field and select **Field Calculator**

 1. Set the Bp_ID equal to [FID] + 1.
 2. Click OK.

v. Right-click on the Bp_ID_T field and select **Field Calculator**

 1. Set the Bp_ID_T equal to Bp_ID.
 2. Click OK.

vi. **Load the Network Analyst toolbar.**
 a. On the Main Menu, click on **View**.
 b. Click on **Toolbars**.
 c. In the side menu, click Network Analyst to add the Network Analyst toolbar to ArcMap.

vii. **Load the Network Analyst Window.**
 a. Click on the Show/Hide Network Analyst Window to open the window.

viii. **Create a New Closest Facility.**
 a. Click on the Network Analyst button on the Network Analyst toolbar.
 b. Select New Closest Facility from the dropdown window.
 c. The Table of Contents and the Network Analyst Window will now contain a Closest Facility layer, which contains Facilities, Incidents, Barriers, and Routes categories.

ix. **Load the Bicycle or Pedestrian Trail points into the Facilities category in Network Analyst.**
 a. In the Network Analyst window, right-click Facilities and click Load Locations. This will open the Load Locations Window.
 b. In the Load Locations Window,
 i. Select the point layer containing the Bicycle or Pedestrian Trail points from the drop-down box next to Load From. If the required point layer is not in the drop-down box, click on the Browse for Point Features to Load icon and navigate to the point layer.
 ii. Choose the Bp_ID as the Sort field.
 iii. Choose the Bp_ID_T for the Name property under Locational Analysis properties.
 iv. Accept the default for the other Locational Analysis properties.
 v. Choose a suitable Search Tolerance for the Location Position. Since the Regional Parks point layer contains so many points, we recommend constraining the tolerance to approximately 200 meters.
 vi. Click OK. This process will take two to three hours to finish.
 c. To verify all Bicycle or Pedestrian Trail points were located on the network dataset, do the following:
 i. Right-click on the Facilities in the Network Analyst Window, Open Attribute Table and sort descending on the STATUS column. The Not Located features should be sorted to the top.
 ii. It is likely that some Bicycle or Pedestrian Trail points will be not be located because they fall outside of the tolerance. Those points usually fall along the interiors of parks and can safely be ignored for this analysis.

x. **Load the Participant locations into the Incidents category in Network Analyst.**
 a. In the Network Analyst window, right-click Incidents and click Load Locations. This will open the Load Locations Window.
 b. In the Load Locations Window,
i. Select the point layer containing the Participant locations from the drop-down box next to Load From. If the required point layer is not in the drop-down box, click on the Browse for Point Features to Load icon and navigate to the point layer.

ii. Choose the Par_ID as the Sort field.

iii. Choose the Par_ID_T for the Name property under Locational Analysis properties.

iv. Accept the default for the other Locational Analysis properties.

v. Choose a suitable Search Tolerance for the Location Position. If features cannot be located in the network dataset, this tolerance may need to be increased.

vi. Click OK.

c. To verify all Participant locations were located on the network dataset, do one of the following. If any feature has a status of Not Located, the search tolerance in 10.b.v may need to be increased or the feature reviewed for correct location.

i. For small datasets, scroll through the resulting list of Incidents in the Network Analyst Window, looking for features with RED question marks.

ii. For large datasets, it may be easier to right-click on the Incidents in the Network Analyst Window, Open Attribute Table and sort descending on the STATUS column. The Not Located features should sort to the top.

11. Set the properties for the analysis,

a. In the Table of Contents, right-click Closest Facility and click Properties. This will open the Closest Facility properties dialog box.

b. Click on the Analysis Settings Tab.

i. Choose Length (meters) for Impedence.

ii. Choose None for Default Cutoff Values.

iii. Set Facilities to Find to 1.

iv. Set Travel From option to Incident to Facility.

v. Set Allow U-Turns to Everywhere.

vi. Set Output Shape Type to True Shape.

vii. Check the box to Ignore Invalid Locations.

viii. Click OK.

12. To calculate the closest Bicycle or Pedestrian Trail point to a Participant location, click the Solve Button on the Network Analyst Toolbar.

a. When Network Analyst has solved the calculations, the Routes layer will be populated with line segments joining each participant location to its closest Bicycle or Pedestrian Trail point. The Routes Attribute table contains the unique IDs for the participants and the bicycle or pedestrian trail along with the network length separating them and the route name (a concatenation of the participant ID and the bicycle or pedestrian trail point ID).

13. Join the Bicycle or Pedestrian Trail points and the Participants to the results of Find Closest Facility analysis.

a. Right-click the Routes layer.

b. Select Joins and Relates and then click Join…

i. Choose Facility_ID as the field to base the join on.

ii. Choose the Bicycle or Pedestrian Trail point layer as the Table to Join to this layer.

iii. Choose the Bp_ID as the field in the table to base the join on.

iv. Click OK.

c. Right-click on the Routes layer.

d. Select Joins and Relates and then click Join…

i. Choose Incident_ID as the field to base the join on.

ii. Choose the Participant layer as the Table to Join to this layer.

iii. Choose the Par_ID as the field in the table to base the join on.

iv. Click OK.

e. Right-click the Routes layer.

f. Select Data and then click Export Data.

i. Choose this layer’s source data for the coordinate system.

ii. Specify the Output Location.
iii. A new shapefile will be created in the output location. This shapefile will contain the routes from each participant location to the nearest bicycle or pedestrian trail. Each route will contain the attributes of the participant and the nearest bicycle or pedestrian.

Calculate straight-line distance to nearest bicycle or pedestrian trail access points

To follow this protocol, you will need:

1. **Participant Locations Point Feature Layer** for incidents (origins)
2. **Bicycle or Pedestrian Trail Point Feature Layer** for facilities (destinations)

Calculate the straight-line distance to the nearest bicycle or pedestrian trail access point

1. Start **ArcMap**.
2. Click the **Add Data** button on the **Standard Toolbar**.
 a. Navigate to the Point Layers to be used in the analysis, in this case the **Participant locations** and the **Bicycle or Pedestrian Trail Access Point**.
 b. Select the Point Layers and click **Add** to add them to ArcMap.
3. Open **ArcToolbox** by clicking on the icon.
4. Navigate to the **Near** tool (Analysis Tools -> Proximity) and double-click to open it.
 a. Click the down-arrow in the Input Features box and select the **Participant Locations** feature layer.
 b. Click the down-arrow in the Near Features box and select the **Bicycle or Pedestrian Trail Access Point** feature layer.
 c. Leave the **Search Radius (optional)** box empty. This will guarantee that every Participant Location will have its nearest bicycle or pedestrian trail access point found.
 d. Leave the **Location (optional)** and **Angle (optional)** check boxes unchecked.
 e. Click **OK** to execute the tool.
5. The tool will find the nearest bicycle or pedestrian trail access point to each Participant Location and measure the straight-line distance between those points. The tool will add two attributes to the participant location attribute table, NEAR_DIST and NEAR_FID. NEAR_DIST will contain the distance, in the units of the Layers (e.g., meters, feet). NEAR_FID will contain the feature ID of the closest bicycle or pedestrian trail access point. Use the NEAR_FID attribute to join the Bicycle or Pedestrian Trail Access Point Layer to the Participant Location layer to determine the characteristics of the nearest bicycle or pedestrian trail access point.

Join the Participant Location Layer to the Bicycle or Pedestrian Trail Access Point Layer using the NEAR_FID attribute.

1. **Right-click** on the Participant Location layer and select **Joins and Relates -> Join**…
2. Choose NEAR_FID as the field to base the join on.
3. Choose the **Bicycle or Pedestrian Trail Access Point** layer as the Table to Join to this layer.
4. Choose the FID attribute as the field in the table to base the join on.
5. Click **OK**. The Bicycle or Pedestrian Trail Access Point attributes will be joined to the Participant locations.
6. **Right-click** on the Participant Locations Layer and select **Data -> Export Data**.
 a. Choose this layer’s source data for the coordinate system.
 b. Specify the **Output Location**.
 c. Click **OK**.

A new shapefile will be created in the output location. This shapefile will contain the participant locations and the attributes of the nearest bicycle or pedestrian trail access point to each participant location.
5.21 Distance to School Attended (2010 EAT-III & ECHO)

Note: This protocol was updated in Version 1.3. It was renumbered from 5.19 to 5.20 in version 2.0. This protocol was updated in version 2.0.

1. Basic Concept

Again, another distance to nearest feature. It is related to the following question in the TREC-IDEA study:

- SS172 About how long would it take to get from your home to the school you attend if you walked? (Note: there is an option to mark they don't attend school) (Adapted from NEWS B9 (14))

2. Basic Definition

Distance to School Attended = Straight line or network distance to the centroid of the school attended.

3. Detailed Definition

Distance to School Attended = Straight line or network distance to the centroid of the school attended with school address obtained from the study survey.

4. Comments and Explanations

None.

5. GIS Approach

The GIS approach is to create a Route in the Network Analyst Extension connecting a participant’s home with the school they attend. Join the participant’s home location to their school location and then solve for the route connecting those locations. A street network is required for calculating the route between home and school.

The straight-line distance is calculated using the Near Tool in ArcToolbox.

6. GIS Steps

The following procedures were completed in ArcMap (ArcInfo) 9.3.1.

To follow this protocol you will need:

1. Roads Layer Network dataset
2. Participant Home Location Point Feature Layer for origins
3. School Location Point Feature Layer for destinations
4. Network Analyst Extension for ArcGIS 9.2

In order to successfully complete this protocol, features in the participants’ location layer must have an attribute describing the school the participant attends. This attribute will be used to join the participant to the correct school features.

Create Home to School Routes: Use LEAN Protocol X.X to create the route from a participant location to the school the participant attends. Do not execute the steps to create the buffer.

Calculate the straight-line distance to the school attended.
To follow this protocol, you will need:

1. **Participant Locations Point Feature** layer
2. **School Location Point Feature** layer

1. Start ArcMap.
2. Click the **Add Data** button on the **Standard Toolbar**.
 a. Navigate to the Point Layers to be used in the analysis, in this case the Participant locations and the School locations.
 b. Select the Point Layers and click Add to add them to ArcMap.
3. Add a field to the **Participant Locations** layer that will hold the straight-line distance to the school attended
 a. Right-click on the **Participant Locations** layer and select **Open Attribute Table**.
 b. Click **Options** and select **Add Field…**
 c. Add **Sch_Dist** as **Double**.
 i. Type **Sch_Dist** in the **Name** field.
 ii. Select **Double** as the **Type**.
 iii. Accept **default (0)** for **Precision**.
 iv. Click **OK**.
4. Join the **School Locations** to the **Participant Locations** using **School ID**.
 a. Right-click on the **Participant Locations** layer and select **Joins and Relates -> Join**…
 b. Choose the **School ID** (the school that the participant attends) as the **field to base the join on**.
 c. Choose the **School Location layer** as the **Table to Join to this layer**.
 d. Choose the **School ID** as the **field in the table to base the join on**
 e. Click **OK**.
5. Use the **Pythagorean theorem** to calculate the straight-line distance to the school attended.
 a. Right-click on the **Participant Locations layer** and select **Open Attribute Table**.
 b. Right click on the **Sch_Dist** attribute and select **Field Calculator…**
 c. In the Field Calculator box, click the check-box next to **Advanced**.
 d. Build a short VBA script to calculate the distance between the participant location and the school attended.
 v. Type the following three lines into the text box:

```
Dim xDiff as Double
Dim yDiff as Double
Dim Output as Double
```

vi. Calculate the square of the difference between the Participant Location X coordinate and the School Location X coordinate.

```
xDiff = Abs([Participant Location.X] – [School Location.X]) * Abs([Participant Location.X] – [School Location.X])
```

vii. Calculate the square of the difference between the Participant Location Y coordinate and the School Location Y coordinate.

```
```

viii. You will probably need to change the terms “Participant Location” and “School Location” in the above two lines. Substitute the names of whatever the feature layers are.
ix. Calculate the square root of the sum of xDiff and yDiff to get the distance.

```
Output = sqrt(xDiff + yDiff)
```

x. Type **Output** into the small text box at the bottom of the Field Calculator and click **OK**. This will populate the **Sch_Dist** attribute with the straight-line distance between the participant location and the school the participant attends.
Here’s what the actual VBA code will look like in the text box:

```vbnet
Dim xDiff as Double
Dim yDiff as Double

xDiff = Abs([Participant Location.X] – [School Location.X]) * Abs([Participant Location.X] – [School Location.X])


Output = sqrt(xDiff + yDiff)
```

The Sch_Dist attribute will contain the straight-line distance between the participant location and the school they attend.
6. CENSUS AND CRIME DATA—GIS MEASURES

Background

There are two forms used in the census up to 2000 and one after that. The short form (or the only form for Census 2010) goes to all households and collects:

- Numbers of residents
- Age
- Hispanic or Latino origin
- Household relationship
- Race
- Sex
- Housing tenure
- Vacancy status

These data are available at the block level, roughly a street block. Blocks of course vary in population and area. We use these data to create the population and housing density variables in the LEAN (and NEAT) protocols.

The long form is only asked of 1/6 of the population and was phased out with the 2000 census, being replaced by the American Community Survey that examines roughly similar questions using a smaller sample but asking questions each year. In 2010 it released 5 year pooled data for areas smaller than 20,000 people. Due to the small numbers we chose to use census tracts for ACS information as the errors were smaller..

6.1 Proportion Female Headed Households (2010 EAT-III)

New in version 2.0.

1. Basic Concept
Female headed households are an indicator of family structure in the vicinity of a participant.

2. Basic Definition
Proportion Female Headed Households = total number of female headed households in area divided by total number of households.

3. Detailed Definition
Proportion Female Headed Households = total number of female headed households divided by total number of households in that same area using census data from the American Community Survey at the tract level. The census block the participant resides within will be the “vicinity”.

4. Comments and Explanations
The tract level is used because confidence intervals are smaller than the block group level.
5. GIS Approach
The GIS approach is to perform a spatial identity between the participant locations and the census block polygon layer. This identity will assign the census block ID to the participant. That ID can be used to join tabular data from the US Census Bureau to the participant and the proportion of female headed households can be calculated.

6. GIS Steps
The following procedures were completed using ArcMap (ArcINFO) 9.3.1.

To complete this protocol, you will need:
1. Participant Location layer
2. Census block polygon layer with the total number of households and the number of female-headed households joined to it

Assign the census block IDs to the participant locations
1. Add the Participant Location layer and the Census block polygon layer to the Map Document
2. Open ArcToolbox and navigate to the Identity tool in the Analysis Tools -> Overlay toolbox.
3. Double-click the Identity tool
4. Specify the Participant locations as the Input Features
5. Specify the Census block polygon layer as the Identity Features
6. Specify the output name and location of the Output Feature Class
7. Set JoinAttributes to ALL
8. Click OK to execute the identity

Calculate the proportion of female-headed households
1. Right-click on the Identity layer and select Open Attribute Table…
2. Click the Options… button and select Add Field…
3. For the Name, type ProFFHH
4. For the Type, select Double
5. Accept the defaults for Precision and Scale
6. Right-click on ProFFHH and select Field Calculator…
 a. Click the attribute containing the number of female-headed households
 b. Click the “/” operator
 c. Click the attribute containing the total number of households
 d. Click OK to execute the calculation

6.2 Median Household Income (2010 EAT-III)
New in version 2.0.

1. Basic Concept
Median household income is an indicator of the economic context.

2. Basic Definition
Median Household Income = median household income in the census tract of residence.

3. Detailed Definition
Median Household Income = median household income in the census tract of residence using the American Community Survey. This protocol used tract level data (for smaller confidence intervals than block group).
4. Comments and Explanations
None.

5. GIS Approach
The GIS approach is to perform a spatial identity between the participant locations and the census tract polygon layer. This identity will assign the tract group ID to the participant. That ID can be used to join the median household income from the US Census Bureau to the participant.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To complete this protocol, you will need:
1. Participant Location layer
2. Census tract polygon layer with the median household income joined to it

Assign the census tract IDs to the participant locations
1. Add the Participant Locations layer and the Census tract layer to the ArcMap document
2. Open ArcToolbox and navigate to the Identity tool in the Analysis Tools -> Overlay toolbox
3. Double-click the Identity tool
4. Specify the Participant locations as the Input Features
5. Specify the Census tract polygon layer as the Identity Features
6. Specify the output name and location of the Output Feature Class
7. Set JoinAttributes to ALL
8. Click OK to execute the Identity

The output feature class will have the Census tract IDs along with the median household income attached to the participant locations.

6.3 Proportion High School Graduates (2010 EAT-III)
New in version 2.0.

1. Basic Concept
Proportion of high school graduates is an indicator of the socio-economic context.

2. Basic Definition
Proportion High School Graduates = number of high school graduates in the census tract of residence divided by the number of people aged 25 and over (up to census 2000).

3. Detailed Definition
Proportion High School Graduates = number of high school graduates in the census tract of residence divided by the number of people aged 25 and over (up to census 2000). After 2010 the American Community Survey will be available, and this protocol will use tract level data (for smaller confidence intervals than block group).

4. Comments and Explanations
None.
5. GIS Approach
The GIS approach is to perform a spatial identity between the participant locations and the census tract polygon layer. This identity will assign the census tract ID to the participant. That ID can be used to join the educational attainment data from the US Census Bureau to the participant location.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1

To complete this protocol, you will need:
1. Participant Location layer
2. Census tract layer with the Sex by Educational Attainment for the Population 25 Years and Over data attached to it

Assign the census tract IDs to the participant locations
1. Add the Participant Locations layer and the Census tract layer to the ArcMap document
2. Open ArcToolbox and navigate to the Identity tool in the Analysis Tools -> Overlay toolbox
3. Double-click the Identity tool
4. Specify the Participant locations as the Input Features
5. Specify the Census tract polygon layer as the Identity Features
6. Specify the output name and location of the Output Feature Class
7. Set JoinAttributes to ALL
8. Click OK to execute the Identity

Calculate the proportion of the population 25 years and over who are high school graduates
1. Right-click on the Identity layer and select Open Attribute Table…
2. Add three fields to the attribute table
 a. Click the Options… button and select Add Field…
 b. For the Name, type Pop25Over
 c. For the Type, select Long Integer
 d. Repeat steps a-c for the high school graduates (HSG)
 e. Click the Options… button and select Add Field…
 f. For the Name, type PropHSG
 g. For the type, select Double
 h. Accept the defaults for Precision and Scale
3. Right-click on Pop25Over attribute and select Field Calculator…
 a. Sum all Sex by Educational Attainment categories to create the population 25 and over
4. Right-click on the HSG attribute and select Field Calculator…
 a. Sum all the Educational Attainment categories for high school degree and higher
5. Right-click on PropHSG attribute and select Field Calculator…
 a. Divide HSG by Pop25Over

6.4 Proportion in Poverty (2010 EAT-III)
New in version 2.0. This will be completed once the 2010 census and ACS data are released.

1. Basic Concept
Proportion of people in poverty is an indicator of the socio-economic context.
2. Basic Definition
Proportion in Poverty = number of households in poverty in the census tract of residence divided by the number of households.

3. Detailed Definition
Proportion in Poverty = number of households in poverty in the census tract of residence divided by the number of households using the American Community Survey.

4. Comments and Explanations
None.

5. GIS Approach
The GIS approach is to perform a spatial identity between the participant locations and the census tract polygon layer. This identity will assign the census tract ID to the participant. That ID can be used to join the educational attainment data from the US Census Bureau to the participant location.

6. GIS Steps

The following procedures were completed using ArcMap (ArcInfo) 9.3.1

To complete this protocol, you will need:
1. Participant Location layer
2. Census tract layer with the Poverty Status in the past 12 months By Household Type by Age of Householder attached to it

Assign the census tract IDs to the participant locations
1. Add the Participant Locations layer and the Census tract layer to the ArcMap document
2. Open ArcToolbox and navigate to the Identity tool in the Analysis Tools -> Overlay toolbox
3. Double-click the Identity tool
4. Specify the Participant locations as the Input Features
5. Specify the Census tract layer as the Identity Features
6. Specify the output name and location of the Output Feature Class
7. Set JoinAttributes to ALL
8. Click OK to execute the Identity

Calculate the proportion of households in poverty
1. Right-click on the Identity layer and select Open Attribute Table…
2. Add three fields to the attribute table
 a. Click the Options… button and select Add Field…
 b. For the Name, type PovHH
 c. For the Type, select Long Integer
 d. Repeat steps a-c for the total number of households (HH)
 e. Click the Options… button and select Add Field…
 f. For the Name, type PropPovH
 g. For the type, select Double
 h. Accept the defaults for Precision and Scale
3. Right-click the PovHH attribute and select Field Calculator…
 a. Sum all the Categories with income below poverty level to create the number of households in poverty
4. Right-click the HH attribute and select Field Calculator…
 a. Sum all the categories together to create the total number of households
5. Right-click the PropPovH attribute and select Field Calculator…
6.5 Median Assessed Home Value (2010 EAT-III)
New in version 2.0.

1. Basic Concept
Median assessed home value is an indicator of the economic context.

2. Basic Definition
Median Assessed Home Value = median value of residential dwellings in the buffer area.

3. Detailed Definition
Median Assessed Home Value = median value of residential dwellings in the area using local assessors data. This variable is available at the parcel level so buffers can be used.

4. Comments and Explanations
This omits rental properties but these are often in multiple unit properties and thus have high values even though individual units may be less expensive.

5. GIS Approach
See steps.

6. GIS Steps
The following procedures were completed using ArcGIS (ArcInfo) 9.3.1

To complete this protocol, you will need:
1. Participant Buffer layer
2. Parcel points layer

The parcel point layer will work significantly better than a parcel polygon layer for this protocol. The spatial join tool is used to determine which parcels fall within each buffer polygon. If the participant layer contains more than a few hundred polygons, the Intersect tool will fail to complete. The spatial join of the parcel polygons and the participant polygons is too large and complex for ArcGIS to calculate. Using the parcel point layer is in the intersect tool creates a simpler overlay calculation and permits ArcGIS to finish.

If the participant polygon layer contains a very large number of features (greater than 1000), consider subdividing the layer into smaller parts, especially if the spatial join fails.

Create a parcel point layer that contains residential properties. Parcels data is difficult to deal with because counties use different classification schemes for parcel land use. WHY DIDN’T WE JUST USE HOMESTEADED POINTS?

Create the parcel points layer containing residential properties
1. Add the Parcel point layer to the ArcMap document
2. Click on Selection menu and choose Select By Attributes…
3. Construct a query using the following USE1_DESC codes:

- USE1_DESC = '1/2 Double Dwelling' OR
- USE1_DESC = '100 Res 1 unit' OR
- USE1_DESC = '100 Res 1 unit/115 B & B' OR

Divide PovHH by HH
"USE1_DESC" = '100 Res 1 unit/200 Agricultural' OR
"USE1_DESC" = '100 Res 1 unit/200 Agricultural/211 Rural Vacant Land' OR
"USE1_DESC" = '100 Res 1 unit/200 Agricultural/211 Rural Vacant Land/300 Commercial' OR
"USE1_DESC" = '100 Res 1 unit/200 Agricultural/211 Rural Vacant Land/940 Wetlands' OR
"USE1_DESC" = '100 Res 1 unit/200 Agricultural/940 Wetlands' OR
"USE1_DESC" = '100 Res 1 unit/200 Agricultural/940 Wetlands/211 Rural Vacant Land/300 Comm' OR
"USE1_DESC" = '100 Res 1 unit/211 Rural Vacant Land' OR
"USE1_DESC" = '100 Res 1 unit/211 Rural Vacant Land/200 Agricultural' OR
"USE1_DESC" = '100 Res 1 unit/211 Rural Vacant Land/300 Commercial' OR
"USE1_DESC" = '100 Res 1 unit/211 Rural Vacant Land/940 Wetlands' OR
"USE1_DESC" = '100 Res 1 unit/252 Managed Forest Land' OR
"USE1_DESC" = '100 Res 1 unit/300 Commercial' OR
"USE1_DESC" = '100 Res 1 unit/350 MH Park' OR
"USE1_DESC" = '100 Res 1 unit/931 Charit Inst' OR
"USE1_DESC" = '100 Res 1 unit/940 Wetlands' OR
"USE1_DESC" = '100 Res 1 unit/940 Wetlands/200 Agricultural' OR
"USE1_DESC" = '100 Res 1 unit/940 Wetlands/200 Agricultural/211 Rural Vacant Land' OR
"USE1_DESC" = '100 Res 1 unit/940 Wetlands/211 Rural Vacant Land' OR
"USE1_DESC" = '100 Res 1 unit/979 T E Misc Co D 20' OR
"USE1_DESC" = '105 Res 2-3 units' OR
"USE1_DESC" = '105 Res 2-3 units/100 Res 1 unit/211 Rural Vacant Land/200 Agricultural' OR
"USE1_DESC" = '105 Res 2-3 units/115 B & B/300 Commercial' OR
"USE1_DESC" = '105 Res 2-3 units/125 SRR' OR
"USE1_DESC" = '105 Res 2-3 units/200 Agricultural' OR
"USE1_DESC" = '105 Res 2-3 units/200 Agricultural/100 Res 1 unit/211 Rural Vacant Land' OR
"USE1_DESC" = '105 Res 2-3 units/200 Agricultural/210 Ag 2 - 3 Units' OR
"USE1_DESC" = '105 Res 2-3 units/200 Agricultural/210 Ag 2 - 3 Units/211 Rural Vacant Land' OR
"USE1_DESC" = '105 Res 2-3 units/200 Agricultural/211 Rural Vacant Land' OR
"USE1_DESC" = '105 Res 2-3 units/211 Rural Vacant Land/940 Wetlands' OR
"USE1_DESC" = '105 Res 2-3 units/300 Commercial' OR
"USE1_DESC" = '105 Res 2-3 units/940 Wetlands' OR
"USE1_DESC" = '105 Res 2-3 units/940 Wetlands/211 Rural Vacant Land' OR
"USE1_DESC" = '105 Res 2-3 units/940 Wetlands/211 Rural Vacant Land/300 Comm' OR
"USE1_DESC" = '105 Res 2-3 units/940 Wetlands/211 Rural Vacant Land/940 Wetlands' OR
"USE1_DESC" = '105 Res 2-3 units/300 Commercial' OR
"USE1_DESC" = '125 SRR' OR
"USE1_DESC" = '125 SRR/200 Agricultural/940 Wetlands' OR
"USE1_DESC" = '125 SRR/940 Wetlands' OR
"USE1_DESC" = 'AG HOUSE GARAGE 1 ACRE' OR
"USE1_DESC" = 'AG HOUSE GARAGE 1 ACRE-AG PRESERVE' OR
"USE1_DESC" = 'APARTMENTS / COOP' OR
"USE1_DESC" = 'APARTMENTS / COOP, RESIDENTIAL SINGLE FAMILY,' OR
"USE1_DESC" = 'Apartment Condominium' OR
"USE1_DESC" = 'CONDOMINIUMS' OR
"USE1_DESC" = 'Condo - Garage/Miscellaneous' OR
"USE1_DESC" = 'Condo/co-op' OR
"USE1_DESC" = 'Condo/co-op Garage Or Storage' OR
"USE1_DESC" = 'Condo/co-ops Storage Unit' OR
"USE1_DESC" = 'Condominium' OR
"USE1_DESC" = 'Condominium Office Units' OR
"USE1_DESC" = 'Double Bungalow' OR
"USE1_DESC" = 'Double Dwelling' OR
"USE1_DESC" = 'Double Dwelling Exempt' OR
"USE1_DESC" = 'EXEMPT RESIDENCE - CHURCH PROPERTY' OR
"USE1_DESC" = 'Exempt Other Residential' OR
"USE1_DESC" = 'Farm-Hmstd (House & 1 Acre)' OR
"USE1_DESC" = 'INDUSTRIAL, RESIDENTIAL SINGLE FAMILY,' OR
"USE1_DESC" = 'Other Residential' OR
"USE1_DESC" = 'RES 1-3 UNITS' OR
"USE1_DESC" = 'RES 4 OR MORE UNITS' OR
"USE1_DESC" = 'RES 4+ OWNERS VALUE' OR
"USE1_DESC" = 'RES DUPLEX/TRIPLEX' OR
"USE1_DESC" = 'RES/AG' OR
"USE1_DESC" = 'RESIDENTIAL' OR
"USE1_DESC" = 'RESIDENTIAL DUPLEXES, DOUBLE BUNGALOWS,' OR
"USE1_DESC" = 'RESIDENTIAL SINGLE FAMILY' OR
"USE1_DESC" = 'RESIDENTIAL SINGLE FAMILY, RESIDENTIAL SINGLE FAMILY,' OR
"USE1_DESC" = 'RESIDENTIAL SINGLE FAMILY, SEASONAL RECREATIONAL,' OR
"USE1_DESC" = 'RESIDENTIAL-CONDOMINIUM OR
"USE1_DESC" = 'RESIDENTIAL-TOWNHOUSE' OR
"USE1_DESC" = 'Res 1 unit' OR
"USE1_DESC" = 'Res 2-3 units' OR
"USE1_DESC" = 'Res/exempt 1/2 Double Dwelling' OR
"USE1_DESC" = 'Res/exempt Multi Family Dwelling' OR
"USE1_DESC" = 'Res/exempt Single Family Dwelling' OR
"USE1_DESC" = 'Residential' OR
"USE1_DESC" = 'Residential - Miscellaneous' OR
"USE1_DESC" = 'Residential - Zero Lot Line - DB' OR
"USE1_DESC" = 'Residential Lake Shore' OR
"USE1_DESC" = 'Residential, Condo/co-op Vacant' OR
"USE1_DESC" = 'Residential, Townhome Vacant' OR
"USE1_DESC" = 'Residential, Vacant Land, Lot' OR
"USE1_DESC" = 'SEASONAL RECREATIONAL' OR
"USE1_DESC" = 'SRR' OR
"USE1_DESC" = 'Seasonal-Residential Rec.' OR
"USE1_DESC" = 'Single Family Dwelling, Platted Lot' OR
"USE1_DESC" = 'TAX FORFEIT' OR
"USE1_DESC" = 'Three Family Dwelling - Exempt' OR
"USE1_DESC" = 'Three Family Dwelling, Platted Lot' OR
"USE1_DESC" = 'Townhome - Detached' OR
"USE1_DESC" = 'Townhome Non-tax Outlot' OR
"USE1_DESC" = 'Townhome-inner' OR
"USE1_DESC" = 'Townhome-outer' OR
"USE1_DESC" = 'Townhouse' OR
"USE1_DESC" = 'Triplex' OR
"USE1_DESC" = 'Two Family Dwelling, Platted Lot' OR
"USE1_DESC" = 'Two Residences On One Parcel'

4. Click OK to execute the query.
5. Click on Selection ➔ Select By Attributes… again
6. From the Method drop-down list, choose Remove from current selection
7. Construct the following query to remove non-homesteaded properties from the selection: “HOMESTEAD” = 'N'
9. Click OK to execute the query
10. Click on Selection ➔ Select By Attributes… again
11. From the Method drop-down list, choose Remove from current selection
12. Construct the following query to remove properties with a building value of $0: “EMV_BLDG” > 0
13. Click OK to execute the query
14. Right-click on the parcel points layer and select Data ➔ Export Data… and save the selected points to a new shapefile. This new shapefile will be used in the part of the protocol.

Spatially join the participant polygons to the parcel points that fall within the polygons
1. Add the participant buffer polygons and reduced parcel points layer created in the last step to the ArcMap document.
2. In ArcToolbox, navigate to the Spatial Join tool in the Analysis Tools ➔ Overlay toolbox. Double-click the Spatial Join tool to open it.
3. Set the Target Features to the reduced parcel points layer
4. Set the Join Features to the participant polygon layer
5. Set the location and name of the output feature class
6. Set the Join Operation to “JOIN_ONE_TO_MANY”
7. Turn the “Keep All Target Features” option off by unchecking the box.
8. Set the Match Option to “INTERSECTS”
9. Click OK to execute the Spatial Join
10. The output feature class will contain the following:
 a. A record for each parcel point – participant polygon intersection
 b. If a parcel point falls within multiple participant polygons, the point will be duplicated for each polygon it falls within

ArcGIS does not have a function for calculating the median value of parcels within a participant polygon. Use a statistical package to find the median value.

6.6 Proportion in 14 and Under (2010 EAT-III)

New in version 2.0. This will be completed once the 2010 census and ACS data are released.

1. Basic Concept
Proportion of people 14 and under relates to those likely to be included in the study.
2. Basic Definition
Proportion 14 and under = number of persons 14 and under in the census tract of residence divided by the number of persons.

3. Detailed Definition
Proportion 14 and under = number of persons 14 and under in the census tract of residence divided by the number of persons using the American Community Survey.

4. Comments and Explanations
None.

5. GIS Approach
The GIS approach is to perform a spatial identity between the participant locations and the census tract polygon layer. This identity will assign the census tract ID to the participant. That ID can be used to join the age data from the US Census Bureau to the participant location.

6. GIS Steps
The following procedures were completed using ArcMap (ArcInfo) 9.3.1.

To complete this protocol, you will need:
3. Participant Location layer
4. Census tract polygon layer with the age data joined to it

Assign the census tract IDs to the participant locations
1. Add the Participant Locations layer and the Census tract layer to the ArcMap document
2. Open ArcToolbox and navigate to the Identity tool in the Analysis Tools ➔ Overlay toolbox
3. Double-click the Identity tool
4. Specify the Participant Locations as the Input Features
5. Specify the Census tract polygon layer as the Identity Features
6. Specify the output name and location of the Output Feature Class
7. Set JoinAttributes to ALL
8. Click OK to execute the Identity

The output feature class will have the Census tract IDs along with the age data attached to the Participant locations.

Calculate the proportion of people aged 14 and under in the participant’s census tract
15. Right-click on the output layer from the previous step and select Open Attribute Table…
16. Click on the Options button and select Add Field… from the dialog box
17. Type in the name of the attribute (e.g., Tot14under) and set the Type to Long Integer
18. Click OK to add the attribute.
19. Click on the Options button again and select Add Field… from the dialog box
20. Type the name of the attribute (e.g., Prop14under) and set the Type to Double
21. Right-click on the Tot14under attribute and select Field Calculator from the context menu
22. Create a formula to sum the age categories that yield a value for the total number of people aged 14 and under in the census tract. Click OK to execute.
23. Right-click on the Prop14under attribute and select Field Calculator from the context menu
24. Create a formula that divides the Total population aged 14 and under by the total population in the census tract. Click OK to execute.
These same steps may be used to calculate the proportion of the population in a certain age group, depending on the study needs.

6.7 Local Street Crime (2010 EAT-III)

1. Basic Concept
The idea is to map street crime for predefined neighborhoods.

2. Basic Definition

3. Detailed Definition

4. Comments and Explanations
None.

5. GIS Approach
We obtained Uniform Crime Report (UCR) crime counts by neighborhood for Minneapolis and by grid zones for Saint Paul. We joined the Minneapolis crime counts with the Minneapolis neighborhood shapefile, and we joined the Saint Paul crime counts with the Saint Paul grid zones. We then merged the two shapefiles together. We calculated the density of crimes against person and the density of property crimes for each neighborhood/grid zone. We spatially joined the participant points with the shapefile to assign the crime stats, including the percentages of personal and property crimes, to the participants.

6. GIS Steps
Not provided.
7. DATA STORAGE AND SHARING

Steps/Problems with Obtaining Data

Accuracy of InfoUSA Data
The InfoUSA business data for USA came along with the Business Analyst extension of ArcGIS 9.1. It has all the business listings for the USA classified according to the NAICS and SIC codes. Only 90 percent of the businesses are geocoded at the street address level and 99.8 percent are assigned to census block group. Initially we saw InfoUSA data as being less accurate. Thus Dun and Bradstreet business listing data was used for the project. However this information required a great deal of geocoding meaning that the difference was much less than had been apparent. On balance we now recommend Business Analyst (Forsyth et al. 2010a).

Dun & Bradstreet Data
The Dun and Bradstreet data was obtained from where data was geocoded according to parcel centroid and had 86,677 geocoded business locations. This dataset was used for design and development of the protocols. However, sometimes very high tolerance of 500 meters had to be used to locate the business points while working with Network Analyst as the Network dataset was created using The Lawrence Group (TLG) road data and the business points were located at the parcel centroid. This increased the processing time as well as sometimes led to many business points remaining not-located, while working with network dataset. Thus to increase the efficiency of protocols using the TLG Network dataset the original Dun and Bradstreet address data was acquired and Geocoded.

Thanks to Dr. Kevin Krizek and his research group for assistance and advice in version 1.0 of these protocols.

Food Beverage Licensing Data
To check the accuracy of InfoUSA and Dun & Bradstreet data the licensing data for the Food Establishments was obtained for the seven county area. The various counties and cities classify the licensing categories on different criteria ranging from size of establishment, number of employees, type of food served and food risk categories. The only common attribute among all the counties and cities was the name of the establishment (Forsyth et al. 2010a).

Storing/Sharing Data

Tracking Changes
Protocol Tracking Excel Sheet: An Excel spreadsheet was used to keep track of completion of Protocols within the team. The sheet was updated weekly about the progress of the Protocols.

Food Establishment Licensing data tracking sheet: In the TREC-IDEA study this sheet was used to keep a track of the contact person to acquire the data, the procedure to acquire the data, when was the concerned person last contacted, what was the response, and whether data was obtained or not.
Decision Logs: Logs were maintained about the daily progress of the protocols, key decisions were recorded, meeting conversations were documented, notes from conversations with government representatives along with their response, and the tasks that were performed.

Other Issues
Projections: The standard coordinate system for MetroGIS datasets is Universal Transverse Mercator (UTM) North American Datum 1983 (NAD83), Zone 15. Any working or final files created from MetroGIS data were kept in the same coordinates. The participant and school data were geocoded using the MetroGIS TLG road data, thus they automatically were projected in UTM NAD83 Zone 15 projection.
APPENDICES

Appendix 1A: Food Data Comparison

Different jurisdictions classify their food services differently. The following lists demonstrate just a small amount of the diversity in the Twin Cities area.

Food Establishment License Classes for Anoka County:

The following license classes apply to food establishments:

- Class I Beverage service only.
- Class II Food establishments serving meals, sandwiches, snacks and similar foods only.
- Class III Catering food service.
- Class IV Food establishment serving meals, sandwiches, snacks and similar foods with bar-type beverage service.
- Class V Schools or churches.
- Class VI Temporary food establishment.
- Class VII Catering food vehicle.
- Class VIII Unopened, pre-prepared, pre-wrapped food service only.
- Class IX Limited food service, including catered day care operations, catered satellite operations in industrial settings where the commissary is on the premises, continental breakfasts serving low hazard foods, and concession stands with menus limited to low hazard foods.

Food Establishment License Classes for St. Louis Park, City of

(http://www.stlouispark.org/city_hall/permits.htm)
http://www.stlouispark.org/city_hall/permit_contact.htm#597

Food and beverage licenses

- Class L (prepackaged food)
- Class M (coffee shop)
- Class H (establishment with on-site preparation of food and dining service)
- Class H+ (establishment with on-site preparation of food as well as dining service, bar and/or catering)
- Class V (vending)

Food Establishment License Classes for Hennepin County
ABU: Bulk Food
ACS: C-Store
ADL: Deli Large
ADM: Combo Meat/Deli
AHB: High Bakery
AHC: High Candy
AHM: High Meat
ALP: Lmt Produce
AMG: Med Grocery
AMM: Medium Meat
APP: Prepack
APR: Medium Produce
ASG: Small Grocery
AVE: Vending
AVG: Small Produce
FAS: Food Assembly With Sales
FAT: Caterer(L)
FBB: Bed and Breakfast
FBH: Boarding House
FBQ: Banquet Kitchen(L)
FBT: Boat Limited Operation
FBV: Boat Small Menu
FCC: Complex Cuisine(S)
FCD: Cong Dining(prep)
FCF: Cafeteria(S)
FCG: Cong Dining(no prep)
FCM: Commissary(S)
FCT: Caterer(S)
FCV: Catering Fd Veh(no prep)
FCX: Complex Cuisine(L)
FDC: Day Care(meals provided)
FDK: Domestic Kitchen
FDL: Delicatessen
FDS: Day Care(snacks only)
FFE: Cafeteria(L)
FFF: Fast Food(S)
FFL: Full Menu(L)
FFM: Manufacturer
FFR: Full Menu(S)
FFS: Fast Food(L)
FFV: Catering Fd Veh(prep)
FHZ: Hazardous Vehicle
FIL: Large Institution
FIS: Small Institution
FLF: Limited
FLS: Food Low Small
FOM: Commissary(L)
FOS: On Sale Bar
FQU: Banquet Kitchen(S)
FRK: Rental Kitchen
FPZ: Pizza Carry,Order/Out
FSS: Snack Std(htd/prepkgd)
FTK: Test Kitchen
FFR: Full Menu(S)
VNR: Veh/Cart/Port Bar No
FYT: Yacht(prep)
SCF: School Sm Cafe
SLC: School Lg Cafe
SLS: School Limited Snack
VWR: Vehicle/Cart
w/Refrigerat

LEAN- GIS PROTOCOLS VERSION 2.1, January 2012, WORK IN PROGRESS
Appendix 1B: Licensing Information for Food, Beverage, and Lodging in the Twin Cities

By Nishi Misha and Ed D’Sousa.

Study Area Geography and Licensing Jurisdictions

The study area covers the following counties: Anoka, Ramsey, Hennepin, Carver, Scott, Dakota and Washington.

Below is a partial list of sources of licensing data.

Minnesota Department of Health Food Code:
(http://www.health.state.mn.us/divs/eh/food/license/delegation.htm)

Base Fee - an annual fee paid by each establishment except special event food stands.

Limited Food Menu - prepackaged food that receives heat treatment and is served in the package, continental breakfast, soft drinks, coffee, nonalcoholic beverages.

Small Establishment - food service with no salad bar, equipment not exceeding: one deep fat fryer; one grill; two hot holding containers; microwaves, or service of dipped ice cream/soft serve frozen desserts, or breakfast service in a bed and breakfast operation, or boarding establishments. Establishments which do not provide catering service and which meet “Medium Establishment” equipment criteria but have a total seating capacity of 50 or less are “Small Establishments.”

Medium Establishment - food service using a range, oven, steam table, salad bar, or salad prep area, more than one deep fat fryer or grill, more than two hot holding containers, or involving catering.

(http://www.health.state.mn.us/divs/eh/food/code/index.html)
• Large Establishment - food service that meets the full menu definition and seats more than 175 people, serves a full menu selection an average of five or more days per week or caters 500 or more meals per day.
• Beer or Wine Table Service - only beer or wine service to customers seated at tables.
• Alcohol Service From Bar - alcoholic mixed drinks are served or where beer or wine is served from a bar.
• Individual Water - a private water supply other than a community public water supply.
• Individual Sewer - a private sewage treatment system, which uses subsurface treatment and disposal.
• Lodging Per Unit - the number of guest rooms, cottages, or other rental units of a hotel, motel, lodging establishment, or resort, or the number of beds in a dormitory.
• Public Swimming Pool - any swimming pool other than a private residential swimming pool.
• Spa Pool - a public hot water pool intended for seated recreational use.
• Mobile Food Unit - a food and beverage service which is a vehicle mounted unit, either motorized or trailered, operating no more than 21 days annually at any one place or is operated in conjunction with a permanent business at the site of the permanent business by the same individual or company, and readily movable, without disassembling, for transport to another location.
• Seasonal Permanent Food Stand - a food and beverage service which is a permanent stand or building, but which operates no more than 21 days annually.
• Seasonal Temporary Food Stand - a food and beverage service stand which is disassembled and moved from location to location, but which operates no more than 21 days annually at any one location.
• Special Event Food Stand - a food and beverage service stand which is used in conjunction with celebrations and special events, and which operates at most three times annually for no more than ten total days.
• Food Cart - Means a food and beverage service, which is a non-motorized vehicle self-propelled by the operator.
• Late Penalty - additional charge added to the license fee when a person operates a business without first having made application and fee payment for the current year's license.

Counties and Cities--see Version 1.0
Appendix 1C; Food, Beverage, and Lodging (FBL) Contacts

For the 7 County TREC study area a contact list is available from the January 2006 document “STATE AND LOCAL ENVIRONMENTAL HEALTH CONTACTS” Compiled by: Minnesota Department of Health (MDH), Division of Environmental Health, Environmental Health Services 651/201-4500, Well Management 651/201-4600 (Also available on the web at http://www.health.state.mn.us/divs/eh/food/license/locals.pdf)
Appendix 1D: Dun and Bradstreet Data vs. Business Analyst

The 2006 data contained the following (Krizek et al. 2007):
 • Records for 135,928 Metro area businesses (10 Counties)
 • Detailed business data includes:
 – Location
 – Industry classification (NAICS and SICS)
 – Sales
 – Employees

Sample Document

Duns Number & update
DUNNS NO: 19-550-5177 D-S UPDATE: 199402.
Company name
American Biological Technologies, Inc.
Address
940 Crossroads Blvd.
Seguin.
Texas (TX) 78155-7801
USA.
Telecommunications
Telephone: 210-372-1391
County: Guadalupe
MSA: 7240 (San Antonio, TX).
Company history
Latest year organized: 1988
Date of incorporation: 27 October 1988 (19881027)
State of incorporation: Texas (TX)
This is:
 A single location
 A Corporation
 A small business
 A Manufacturing location.

Management
President:
Michael Schrage Pres

Line of business
Activities:
Mfg Serums.
US SIC codes
US SIC:
 PRIMARY: 2835 Diagnostic substances, nsk

Employees
Employees here: 83
Employees total:
 Latest year: 83
 Trend year (1992): 83
 Base year (1990): 60
Employment growth: 38 %.
Financial information
Sales:
 Latest year: USD 1,000,000
 ECU 889,570
Annual sales revision date: 13 January 1994 (940113).
Accommodation information
 Square footage: 25,000
 Occupancy type: Owned.
Professional advisors
 Banking: Seguin State Bank & Trust Co (DUNS NO.: 00-895-3283).

Business Analyst Attributes

CONAME – the legal, incorporated business location name
ADDR – physical address of business location
CITY16 – city where the business resides
STATE – two-letter abbreviation of the state where the business resides
STATE_NAME – full name of state where the business resides
ZIP – five digit ZIP Code where the business resides
ZIP4 – four digit extension of the primary ZIP Code, if available
PHONE – telephone number with area code
SIC – primary Standard Industrial Code (up to six digits) of the business location
NAICS_EXT – primary North American Industry Classification System code (up to eight digits) of the business location
SALES_VOL – estimates sales or assets in thousands of dollars for the business location
HDBRCH – business status code of the business location
NUMBER_EMP – number of employees for the business location
EMPSIZ – range describing the number of employees for the business location
FRNCOD – franchise code
SQFT – range describing the square footage of the business location
MATCH_CODE – known qualities about the geocoded location for the business location
LOCNUM – unique internal code of the business location
Appendix 1E: Notes on SIC and NAICS coding

By Ed D’Sousa

This appendix documented the SIC/NAICS codes that were used for the Twin Cities Walking study and highlighted some of the quality and usability issues of ESRI’s Business Analyst infoUSA database. It is available in version 1.0 of these protocols. For further discussion see Forsyth et al. (2010a)
Appendix 1F: Protocol/Geography/Data Matrix TREC-IDEA
Matrix complete as of version 1.0.

<table>
<thead>
<tr>
<th>Draft TREC-IDEA Measures</th>
<th>Geographies</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Feb-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. FUNDAMENTAL PROTOCOLS AND PROCEDURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Gross Area (including water): See NEAT GIS Protocol 2.2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Measurement Geography Type 1: Straight Line or Airline Buffer; See NEAT GIS Protocol 2.5.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.4 Measurement Geography Type 2: Network or Street Distance Buffer</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.5 Measurement Geography Type 3: Straight Line or Airline Distance to Nearest Feature; See NEAT GIS Protocol 2.7.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.6 Measurement Geography Type 4: Network or Street Distance to Nearest Feature</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.7 Measurement Geography Type 5: Home to School Route Buffer</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3. FOOD SERVICES A.K.A. RESTAURANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Distance to Nearest Restaurant</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.2 Restaurant Density</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.3: Distance to Limited Service or Fast Food Restaurants</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.4 Limited Service of Fast Food Restaurant Density</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.5 Distance to Fast Food Restaurants Subtypes (See below for subtypes)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.6 Density of Fast Food Restaurant Subtypes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.7 Distance to Non Fast Food Restaurants</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.8 Density of Non Fast Food Restaurants</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4. FOOD STORES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Distance to any Retail Food Outlet--All Stores Selling Food (not restaurants)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4.2 Density of all Retail Food</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Outlets-All Stores Selling Food (not restaurants)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Distance to Groceries, Supermarkets, or Super Centers</td>
<td></td>
<td>x x x x x x</td>
</tr>
<tr>
<td>4.4 Density of Groceries, Supermarkets, or Super Centers</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>4.5 Distance to Large Supermarket or Super Center</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>4.6 Density of Large Supermarkets or Super Centers</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>4.7 Type of Nearest Retail Food Outlet</td>
<td></td>
<td>x x x x x</td>
</tr>
<tr>
<td>4.8 Distance to Nearest Convenience Store Including Gas Stations</td>
<td></td>
<td>x x x x</td>
</tr>
<tr>
<td>4.9 Density of Convenience Stores Including Gas Stations</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>5. YOUTH AND UTILITARIAN OR RECREATIONAL PHYSICAL ACTIVITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Raw Population per Unit Land Area: See NEAT GIS Protocol 3.1</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>5.2 Population per Unit Land Area (without water): See NEAT GIS Protocol 3.2</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>5.3 Residential Population in Residential Parcels (Residential Density) (without water): See NEAT GIS Protocol 3.3</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>5.4 Employment Per Unit Land Area: See NEAT GIS Protocol 3.6</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>PEDESTRIAN INFRASTRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 Distance to Nearest Transit Stop: See NEAT GIS Protocol 4.10</td>
<td></td>
<td>x x x</td>
</tr>
<tr>
<td>5.6 Transit Stop Density: See NEAT GIS Protocol 4.11</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>LAND-USE MIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7 Percentage of Total Parcel Area in Major Land Uses (residential, commercial, office, industrial, institutional, park and recreation, vacant): See NEAT GIS Protocol 5.1</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>5.8 Percentage of Land Area in Retail Uses (a subset of the major land uses): See NEAT GIS Protocol 5.4</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>5.9 Retail Employment Density: See NEAT GIS Protocol 5.11</td>
<td>x x x</td>
<td>x</td>
</tr>
<tr>
<td>5.10 Distance to Nearest Facility (Mentioned in the Survey): Stores</td>
<td>x x x</td>
<td></td>
</tr>
</tbody>
</table>
STREET PATTERN

<table>
<thead>
<tr>
<th>Measure</th>
<th>EAT-III</th>
<th>ECHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Census Block Area: See NEAT GIS Protocol 6.1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Median Census Block Area: See NEAT GIS Protocol 6.2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Number of Access Points: See NEAT GIS Protocol 6.4*</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td>Road Length per Unit Area: See NEAT GIS Protocol 6.5</td>
<td>x x x x</td>
<td>x</td>
</tr>
<tr>
<td>Intersections per Unit Area: See NEAT GIS Protocol 6.6</td>
<td>x x x x</td>
<td></td>
</tr>
</tbody>
</table>

OTHER BUILT-ENVIRONMENT RELATED/SPATIAL VARIABLES

<table>
<thead>
<tr>
<th>Measure</th>
<th>EAT-III</th>
<th>ECHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of High Functional Classifications [i.e. busy streets]: See NEAT GIS Protocol 7.1</td>
<td>x x x x</td>
<td>x</td>
</tr>
<tr>
<td>Distance to Nearest Park</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td>Distance to Nearest Gym or Fitness Facility</td>
<td>x x x x</td>
<td>x x x</td>
</tr>
<tr>
<td>Distance to Nearest Recreation Center, Community Center, or School</td>
<td>x x x x</td>
<td>x x x</td>
</tr>
<tr>
<td>Distance to Nearest Bicycle or Pedestrian Trail Access Point</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td>Distance to School Attended</td>
<td>x x</td>
<td>data from survey</td>
</tr>
</tbody>
</table>

Note: Buffers will be at 200m, 400m, 800m, and 1600m from home or school; other distances are possible.

Appendix 1G: EAT-III and ECHO measures

The following measures are being used in the EAT-III and ECHO studies at 800, 1600, and 3000 meter buffers.

<table>
<thead>
<tr>
<th>Protocols:</th>
<th>EAT-III</th>
<th>ECHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Net Land Area (without water): See NEAT GIS Protocol 2.1.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.2 Gross Area (including water): See NEAT GIS Protocol 2.2.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.3 Measurement Geography Type 1: Straight Line or Airline Buffer; See NEAT</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Protocols:</td>
<td>EAT-III</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Measures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>density (3 network + 3 straight line)??</td>
<td>distance (network and straight line)</td>
</tr>
<tr>
<td>2.4 Measurement Geography Type 2: Network or Street Distance Buffer</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.5 Measurement Geography Type 3: Straight Line or Airline Distance to Nearest Feature; See NEAT GIS Protocol 2.7.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.6 Measurement Geography Type 4: Network or Street Distance to Nearest Feature</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.7 Measurement Geography Type 5: Home to School Route Buffer</td>
<td>OMIT</td>
<td>OMIT</td>
</tr>
<tr>
<td>3. RESTAURANTS A.K.A. FOOD SERVICES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Distance to Nearest Restaurant</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.2 Restaurant Density</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3.3: Distance to Fast Food Restaurants (may use chain names rather than NAICS codes)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.4 Fast Food Restaurant Density</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4. FOOD STORES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Distance to Groceries, Supermarkets, or Super Centers</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4.4 Density of Groceries, Supermarkets, or Super Centers</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4.5 Distance to Large Supermarkets or Super Center</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4.6 Density of Large Supermarkets or Super Centers</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4.8 Distance to Nearest Convenience Store Including Gas Stations</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4.9. Density of Convenience Stores Including Gas Stations</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4.10 Distance to Farmers Market</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAND USE, DENSITY, ETC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Population per Unit Land Area excluding water: See NEAT GIS Protocol 3.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.5 Distance to Nearest Transit Stop (NEAT GIS Protocol 4.10)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5.6 Transit Stop Density (NEAT GIS Protocol 4.11)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Protocols:</td>
<td>EAT-III</td>
<td>ECHO</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Measures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7 Percentage of Total Parcel Area in Major Land Uses (residential, commercial, office, industrial, institutional, park and recreation, vacant): (NEAT GIS Protocol 5.1)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>STREET PATTERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10 Average Census Block Area (NEAT GIS Protocol 6.1)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.11 Median Census Block Area: See NEAT GIS Protocol 6.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.12 Number of Access Points (TREC version)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.14 Road Length per Unit Area: See NEAT GIS Protocol 6.5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.15 Intersections per Unit Area: See NEAT GIS Protocol 6.6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.16 Proportion of High Functional Classifications [i.e. busy streets]: See NEAT GIS Protocol 7.1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>OTHER BUILT-ENVIRONMENT RELATED/SPATIAL VARIABLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.17 Distance to Nearest Park</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.18 Distance to Nearest Gym or Fitness Facility</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.19 Distance to Nearest Recreation Center, Community Center, or School</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.20 Distance to Nearest Bicycle or Pedestrian Trail Access Point</td>
<td>check</td>
<td></td>
</tr>
<tr>
<td>5.21 Distance to School Attended</td>
<td>check</td>
<td>2</td>
</tr>
<tr>
<td>NEW INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Proportion Female Headed Households</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6.2 Median Household Income</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.3 Proportion High School Graduates</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.4 Proportion in Poverty</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.5 Median Assessed Home Value</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocols:</td>
<td>EAT-III</td>
<td>ECHO</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Measures:</td>
<td>density (3 network + 3 straight line)??</td>
<td>distance (network and straight line)</td>
</tr>
<tr>
<td>PARK ATTRIBUTES: We want to investigate, but not necessarily use, park attribute data, e.g. programming—that will mostly be the MPC folks but I could help (by the end of the meeting this seemed complicated).</td>
<td>INVESTIGATE</td>
<td></td>
</tr>
<tr>
<td>CRIME: Similarly, the MPC folks will look into crime data—if disaggregated data are not available, respondents could be allocated to neighborhoods or grid cells.</td>
<td>INVESTIGATE</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2A: GIS Steps for Old Protocol 2.4: Network Buffer

5. GIS Approach
Use Network Analyst extension for ArcGIS 9.2 to determine the new service area around the set of point features, in this case participants or schools. Line features such as roads or trails are used to create the network, which is used to calculate all possible routes of a specified distance from the selected points.

6. GIS Steps
The following procedure was completed using ArcInfo 9.2
Requirements:
1. Road Layer polyline
2. Point Features for buffer
3. Network Analyst Extension for ArcGIS 9.2

II. Create a New Network Dataset
1. Start ArcCatalog.
2. On the Main Menu click Tools and Click on Extensions.
 a. Check Network Analyst Extension.
 b. Click Close.
3. In the catalog tree, navigate to the feature dataset if you are creating a geodatabase based network dataset. If you are creating a shapefile based network dataset navigate to the shapefile location in the catalog tree.
4. If you are creating a geodatabase based network dataset right click on the feature dataset and point to New and then click Network Dataset. If you are creating a shapefile based network dataset right click on the shapefile and click New Network Dataset.
5. In the New Network Dataset Wizard
 a. Type a name for the network dataset and Click Next.
 b. Check the Road feature classes that will be used as network source in the network and Click Next.
 c. Accept the default connectivity settings and Click Next.
 d. Accept the default option NO to modify the connectivity with elevation field data or elevation field settings and Click Next.
 e. Accept the default YES to model Turn in the Network and Click Next.
 f. Click Add
 i. Type Length in the Name field.
 ii. Select Cost as Usage Type, if it is not already selected.
 iii. Select Meters as the Units.
 iv. Select Double as the Data type, if it is not already selected.
 v. Click OK.
 vi. Click Next.
 g. Accept the default Yes to use the default directions settings to establish driving directions for the network dataset and Click Next.
 h. Review the network dataset summary to check the options are correctly selected and Click Finish.
6. Click Yes to build the Network Dataset.

III. Create the Network or Street Distance Buffer
1. Start ArcMap
2. On the Main Menu click Tools and Click on Extensions.
 a. Check Network Analyst Extension.
b. Click Close

3. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Network Dataset location, created earlier in Step I
 b. Click on the Network Dataset and click Add to add the Network Dataset to ArcMap.
 c. Click Yes to add all the feature classes, that participate in the network, to the map.

4. Click the Add Data button on the Standard Toolbar
 a. Navigate to the Point Layer to be used for analysis, in this case Participant location/School Locations
 b. Click on the Point Layer and click Add to add it to ArcMap.

5. In the Table of Contents Right Click the Point Layer and click on Open Attribute Table
 b. In the Attribute Table
 i. Click Options
 ii. Click Add Field
 iii. Add the School_Id/Participant_Id as Text
 ▪ Type School_Id/Participant_Id in the Name field
 ▪ Select Text (50) as Type
 ▪ Accept default for Length
 ▪ Click OK
 iv. Add the School_Id/Participant_Id as Integer
 ▪ Type School_Id/Participant_Id in the Name field
 ▪ Select Short Integer as Type
 ▪ Accept default (0) for Precision
 ▪ Click OK
 v. Enter the assigned Id for the participants and schools

6. On the main menu click View
 a. Click on Toolbars
 b. In the side menu click Network Analyst to add the Network Analyst toolbar to ArcMap

7. Click Network Analysis Toolbar
 a. Click Network Analyst Window button to add the Network Analyst Window to the map

8. On the Network Analyst Toolbar Click Network Analyst Dropdown Menu
 a. Click New Service Area
 b. The Table of contents and the Network Analyst Window contains empty list of Facilities, Barriers and Polygon Categories.

9. On the Network Analyst Window right Click Facilities and Click Load Locations
 a. In Load Locations Window
 i. Click Browse and Navigate to the point feature layer
 ii. Click on the Point feature layer and click Add
 iii. Choose the Participant ID/School Id as the Name field. Accept the default for other Location Analysis Properties
 iv. Accept the default Location Position
 v. Click OK

10. To set the properties to be used in the Analysis, In the Table of Contents Right Click the Service Area Layer and Click Properties
 a. Click on Analysis Settings Tab
 i. Choose Length (Meters) for Impedance.
 ii. Type the Buffer Distance for Default Breaks
 iii. Choose Away From Facility as Direction
iv. Choose Everywhere for Allow U-Turns
v. Uncheck the box next to Oneway Restrictions.
b. Click on Polygon Generation Tab
 i. Check Polygon generation
 ii. Choose Generalized as the Polygon Type
 iii. Uncheck Trim Polygons
 iv. Choose Overlapping for Multiple Facility Options
 v. Choose Rings as the Overlap Type
c. Click Ok

11. On the Network Analyst Toolbar, Click Solve Button

12. Joining attributes with Source Point Layer to carry over the data.
 a. Right Click the Polygons Layer
 b. Click Joins and Relates and then Join
 i. Choose Facility Id as the Field to base the join on
 ii. Choose the School/Participant Layer as the Table to Join to this layer
 iii. Choose the School/Participant ID as the field in the table to base the join on
 c. Right Click the Polygons Layer
 d. Click on Data and then Export Data
 i. Choose this layer’s source data for the coordinate system
 ii. Specify the Output location
Appendix 2B: Logic for Developing the “Sausage” Network Buffer

Street network buffers aim to measure the environment that can be reached by someone on foot along the street network and, if possible, the pedestrian network as well (though given a lack of GIS data on the pedestrian network, this can be time consuming because it requires fieldwork).

In addition, the way GIS programs calculate this buffer can lead to quite different shapes and areas. The images below illustrate some of the differences between how ArcView 3.3 calculated buffers (this was the version available up to about 2006) and the detailed and generalized buffers of version 9 of ArcGIS. They differ substantially. In the earlier version the network buffer merely joined the points furthest out X distance along the roads from the starting point. This was, or at least approximated, a shape known as a convex hull. This is not available in the new network analyst. Instead there are two shapes, one more complex (detailed) and one simpler (generalized). The following illustrations on the next page demonstrate some of these changes for a single case. This is the reason that for the versions of these protocols starting at 2.0 in 2010 we have developed a new “sausage” buffer. Our thoughts at arriving at this are below.

The following list illustrates the differences in area among the different standard buffers in Network Analysts and illustrating that in area, if not in shape and location, the newer generalized buffers are closest to the old network buffers. We used those in the TREC-IDEA study (version 1 and 1.1. of these protocols).

Area of Buffers Around One Point:

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>ArcView 3.3</th>
<th>Generalized Buffer</th>
<th>Detailed Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600 m</td>
<td>1866166.16725 sq m / 186.62 hectares</td>
<td>1678756.48148 sq m / 167.88 hectares</td>
<td>1976928.43402 sq m / 197.69 hectares</td>
</tr>
<tr>
<td>800 m</td>
<td>73484.750545 sq m / 7.35 hectares</td>
<td>60505.556168 sq m / 6.05 hectares</td>
<td>194117.956987 sq m / 19.41 hectares</td>
</tr>
<tr>
<td>400 m</td>
<td>7566.379119 sq m / 0.76 hectares</td>
<td>4377.928967 sq m / 0.44 hectares</td>
<td>48506.559253 sq m / 4.85 hectares</td>
</tr>
<tr>
<td>200 m</td>
<td>1566.279234 sq m / 0.16 hectares</td>
<td>4177.928967 sq m / 0.44 hectares</td>
<td>48506.559253 sq m / 4.85 hectares</td>
</tr>
</tbody>
</table>
The outer greenish line is the traditional, ArcView 3.3 network buffer for 1 1600 m distance.

The purple line is the "generalized" buffer from ArcGIS 9.1 for a 1600m distance.

The yellow area is the "detailed" buffer from ArcGIS 9.1 for a 1600m distance.

Comparison of 200m, 400m, 800m and 1600m ArcView 3.3 network buffers, ArcGIS 9.1 generalized buffers, and ArcGIS 9.1 detailed buffers.

Notice that the detailed buffers are often in quite different locations to the generalized and ArcView buffers.
However, it is also possible to just buffer roads with a kind of network of sausages following the roads. This would be a more replicable method across program revisions and from program to program (given other GIS programs are more popular in Europe, for example). The sausage network buffer is a buffer constructed using a different function in ArcGIS and merely buffering x meters (we chose 50 for this test) on either side of all streets near the point out y meters (the buffer length). The following diagram illustrates how this buffer compares to the ArcView 3.3, generalized, and detailed buffer. This uses a buffer with flat ends--note that we eventually chose one with rounded ends.

The outer gray line is the traditional, ArcView 3.3 network buffer for 1 400 m distance. The blue line is the “generalized” buffer from ArcGIS 9.1 for a 400m distance. The red line is the “detailed” buffer from ArcGIS 9.1 for a 400m distance. The yellow area is the “sausage” buffer with straight ends.

Area of the Buffers:
ArcView 3.3 Buffer = 28.5 hectares
ArcGIS 9.1 Generalized Buffer = 24.6 hectares
ArcGIS 9.1 Detailed Buffer = 26.9 hectares
ArcGIS 9.1 Sausage Network Buffer = 28.2 hectares
Area of the Buffers:

ArcView 3.3 Buffer = 7.3 hectares
ArcGIS 9.1 Generalized Buffer = 6.01 hectares
ArcGIS 9.1 Detailed Buffer = 19.4 hectares
ArcGIS 9.1 Sausage Network Buffer = 7.5 hectares

Area of the Buffers:

ArcView 3.3 Buffer = 13.0 hectares
ArcGIS 9.1 Generalized Buffer = 11.9 hectares
ArcGIS 9.1 Detailed Buffer = 15.3 hectares
ArcGIS 9.1 Sausage Network Buffer = 12.1 hectares
In 2010 we decided to really take on this challenge and develop viable sausage buffers that would be more stable in the sense they would not vary across programs and versions of programs. The following are some working tests we have performed.

As can be seen in gridded areas these buffers approximate the old-style network buffer shapes. We are still testing cul-de-sac style patterns for optimal buffer radii (the amount buffered on either side of the street). A final set of tests will more fully compare buffers.

2010 Test 1: Sausage buffer X= 800 M and Y (radius) = 50 m.

This buffer radius covers most of the interiors of the standard sized blocks but extends 50m beyond the X distance. It represents a minimum buffer size for “grabbing” or measuring important contextual features in the environment such as nearby land use.
2010 Test 2: Sausage buffer X = 800 M and Y (radius) = 50, 100, 200, 400, and 800 in a grid context.

The very large buffers extend out a great distance but if the radius were to be subtracted from the buffer distance to add up to X (800 m in this case), they would cover little of the road network (400m for a 400m buffer and 0m for an 800m one). This led us to look at smaller radius values.

2010 Test 3: Sausage buffer X = 800 M and Y (radius) = 50, 100, 200, 400, and 800 in a more curvilinear context.

The problems are similar to those in test 2.
2010 Test 3: Sausage buffer X= 800 M and Y (radius) = 100 m in a grid context, using different buffer end shapes.

This compares flat ended buffers with rounded buffers adjusted so they end at exactly X (in this case 800) meters from the starting point. The rounded buffer (purple line) is a close approximation of the earlier network buffers.

Further testing will resolve whether a slightly wider buffer might make sense.

<table>
<thead>
<tr>
<th>Wikipedia</th>
<th>Dunkin' Donuts</th>
<th>Papa Murphy's Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&W</td>
<td>Einstein Bros. Bagels</td>
<td>Take 'N Bake</td>
</tr>
<tr>
<td>Amigos/Kings Classic</td>
<td>El Pollo Loco</td>
<td>Peter Piper Pizza</td>
</tr>
<tr>
<td>Andy's</td>
<td>Fatburger</td>
<td>Pioneer Chicken</td>
</tr>
<tr>
<td>Arby's</td>
<td>Fazoli's</td>
<td>Pizza Hut</td>
</tr>
<tr>
<td>Arctic Circle Restaurants</td>
<td>Filiberto's</td>
<td>Pizza Ranch</td>
</tr>
<tr>
<td>Arthur Treacher's</td>
<td>Five Guys</td>
<td>Popeyes Chicken & Biscuits</td>
</tr>
<tr>
<td>Atlanta Bread Company</td>
<td>Fosters Freeze</td>
<td>Portillo's</td>
</tr>
<tr>
<td>Au Bon Pain</td>
<td>Fuddruckers</td>
<td>Potbelly Sandwich Works</td>
</tr>
<tr>
<td>Back Yard Burgers</td>
<td>Godfather's Pizza</td>
<td>Qdoba Mexican Grill</td>
</tr>
<tr>
<td>Baja Fresh</td>
<td>Grandy's</td>
<td>Quiznos Subs</td>
</tr>
<tr>
<td>Baja Fresh Mexican Grill</td>
<td>Green Burrito</td>
<td>Raising Cane's Chicken Fingers</td>
</tr>
<tr>
<td>Baker's Drive-thru</td>
<td>Griff's Hamburgers</td>
<td>Rally's Hamburgers</td>
</tr>
<tr>
<td>Baskin Robbins</td>
<td>Hamburger Stand with Der Wienschnitzel</td>
<td></td>
</tr>
<tr>
<td>Big Apple Bagels</td>
<td>Happy Daz</td>
<td>Red Burrito</td>
</tr>
<tr>
<td>Big Boy</td>
<td>Hardee's</td>
<td>Roy Rogers Family Restaurants</td>
</tr>
<tr>
<td>Blake's Lotaburger</td>
<td>Home Run Inn Pizza</td>
<td>Rubio's</td>
</tr>
<tr>
<td>Blimpie</td>
<td>Honey Dew Donuts</td>
<td>Runza</td>
</tr>
<tr>
<td>Bojangles'</td>
<td>Hot Dog on a Stick</td>
<td>Sbarro</td>
</tr>
<tr>
<td>Boston Market</td>
<td>Hot Stuff Pizza</td>
<td>Schlotzsky's Deli</td>
</tr>
<tr>
<td>Boston's Gourmet</td>
<td>In-N-Out Burger</td>
<td>Shakey's Pizza</td>
</tr>
<tr>
<td>Braum's</td>
<td>Jack in the Box</td>
<td>Simple Simon's Pizza</td>
</tr>
<tr>
<td>Brown's Chicken & Pasta</td>
<td>Jason's Deli</td>
<td>Skipper's</td>
</tr>
<tr>
<td>Bruster's Ice Cream</td>
<td>Jimmy John's</td>
<td>Sonic Drive-In</td>
</tr>
<tr>
<td>Bud's Broiler</td>
<td>Kewpee</td>
<td>Sonny's Real Pit Bar-B-Q</td>
</tr>
<tr>
<td>Buffalo Wild Wings</td>
<td>KFC</td>
<td>Starbucks</td>
</tr>
<tr>
<td>Bun Boy</td>
<td>Krispy Kreme</td>
<td>Starbucks</td>
</tr>
<tr>
<td>Burger King</td>
<td>Krazy Krush</td>
<td>Steak 'n Shake</td>
</tr>
<tr>
<td>Captain D's Seafood</td>
<td>L&B Hawaiian Barbecue</td>
<td>Stewart's Drive-In</td>
</tr>
<tr>
<td>Carl's Jr.</td>
<td>La Salsa</td>
<td>Submarina</td>
</tr>
<tr>
<td>Charley's Grilled Subs</td>
<td>Lenny's Sub Shop</td>
<td>Subway</td>
</tr>
<tr>
<td>Checkers Drive-In (also called</td>
<td>Little Caesars Pizza</td>
<td>Taco Bell</td>
</tr>
<tr>
<td>Rally's Drive-In)</td>
<td>Long John Silver's</td>
<td>Taco Bueno</td>
</tr>
<tr>
<td>Chester's</td>
<td>Maid-Rite</td>
<td>Taco Cabana</td>
</tr>
<tr>
<td>Chick-fil-A</td>
<td>McDonald's</td>
<td>Taco Del Mar</td>
</tr>
<tr>
<td>Chipotle Mexican Grill</td>
<td>McDonald's</td>
<td>Taco John's</td>
</tr>
<tr>
<td>Chuck E. Cheese's</td>
<td>Milo's Sandwiches</td>
<td>Taco Mayo</td>
</tr>
<tr>
<td>Church's Chicken</td>
<td>Milo's Hamburgers</td>
<td>Taco Tico</td>
</tr>
<tr>
<td>CiCi's Pizza</td>
<td>Moe's Southwest Grill</td>
<td>Taco Time</td>
</tr>
<tr>
<td>City Barbeque</td>
<td>Mr. Chicken</td>
<td>Taste-Freez</td>
</tr>
<tr>
<td>Cold Stone Creamery</td>
<td>Mr. Sub</td>
<td>Teriyaki Boy</td>
</tr>
<tr>
<td>Cosi</td>
<td>Mrs. Winners Chicken</td>
<td>The Daily Bagel</td>
</tr>
<tr>
<td>Cousins Subs</td>
<td>Nathan's Famous</td>
<td>The Great American Bagel</td>
</tr>
<tr>
<td>Crown Burgers</td>
<td>Noah's Bagels</td>
<td>The Great Steak & Potato</td>
</tr>
<tr>
<td>Culver’s</td>
<td>Ollie's Trolley</td>
<td>The Hat</td>
</tr>
<tr>
<td>Culver’s</td>
<td>Orange Julius</td>
<td>Tim Hortons</td>
</tr>
<tr>
<td>Dairy Queen</td>
<td>Original Tommy's</td>
<td>Togo's Eateries</td>
</tr>
<tr>
<td>Del Rancho</td>
<td></td>
<td>Tudor's Biscuit World</td>
</tr>
<tr>
<td>Del Taco</td>
<td></td>
<td>Una Mas!</td>
</tr>
<tr>
<td>Denny's</td>
<td></td>
<td>Wendy's</td>
</tr>
<tr>
<td>Dick’s Drive-In</td>
<td></td>
<td>Wetzel's Pretzels</td>
</tr>
<tr>
<td>Dog n Suds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2007 Quick Serve Restaurant Magazine online’s National Chain Restaurants--QSR 50 (ranked by system-wide sales). The list (with their rank) is as follows:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>McDonald’s</td>
</tr>
<tr>
<td>2</td>
<td>Burger King</td>
</tr>
<tr>
<td>3</td>
<td>Wendy’s*</td>
</tr>
<tr>
<td>4</td>
<td>Starbucks Coffee*</td>
</tr>
<tr>
<td>5</td>
<td>Taco Bell2</td>
</tr>
<tr>
<td>6</td>
<td>Dunkin’ Donuts*</td>
</tr>
<tr>
<td>7</td>
<td>Pizza Hut2</td>
</tr>
<tr>
<td>8</td>
<td>KFC2</td>
</tr>
<tr>
<td>9</td>
<td>Sonic</td>
</tr>
<tr>
<td>10</td>
<td>Arby’s*</td>
</tr>
<tr>
<td>11</td>
<td>Chick-fil-A*</td>
</tr>
<tr>
<td>12</td>
<td>Chipotle</td>
</tr>
<tr>
<td>13</td>
<td>Church’s Chicken</td>
</tr>
<tr>
<td>14</td>
<td>CiCi’s Pizza</td>
</tr>
<tr>
<td>15</td>
<td>Cold Stone Creamery</td>
</tr>
<tr>
<td>16</td>
<td>Culver’s</td>
</tr>
<tr>
<td>17</td>
<td>Dairy Queen*</td>
</tr>
<tr>
<td>18</td>
<td>Del Taco</td>
</tr>
</tbody>
</table>

2010 Quick Serve Restaurant Magazine online’s National Chain Restaurants--QSR 50 (ranked by system-wide sales). The list is as follows:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>McDonald’s</td>
</tr>
<tr>
<td>2</td>
<td>Subway*</td>
</tr>
<tr>
<td>3</td>
<td>Burger King</td>
</tr>
<tr>
<td>4</td>
<td>Wendy’s*</td>
</tr>
<tr>
<td>5</td>
<td>Starbucks Coffee*</td>
</tr>
<tr>
<td>6</td>
<td>Taco Bell2</td>
</tr>
<tr>
<td>7</td>
<td>Dunkin’ Donuts*</td>
</tr>
<tr>
<td>8</td>
<td>Pizza Hut2</td>
</tr>
<tr>
<td>9</td>
<td>KFC2</td>
</tr>
<tr>
<td>10</td>
<td>Sonic</td>
</tr>
<tr>
<td>11</td>
<td>Arby’s*</td>
</tr>
<tr>
<td>12</td>
<td>Chick-fil-A*</td>
</tr>
<tr>
<td>13</td>
<td>Jack in the Box</td>
</tr>
<tr>
<td>14</td>
<td>Domino’s*</td>
</tr>
<tr>
<td>15</td>
<td>Panera Bread*</td>
</tr>
<tr>
<td>16</td>
<td>Dairy Queen*</td>
</tr>
<tr>
<td>17</td>
<td>Papa John’s</td>
</tr>
<tr>
<td>18</td>
<td>Quiznos Subs*</td>
</tr>
<tr>
<td>19</td>
<td>Hardee’s*</td>
</tr>
<tr>
<td>20</td>
<td>Chipotle</td>
</tr>
<tr>
<td>21</td>
<td>Carl’s Jr.*</td>
</tr>
<tr>
<td>22</td>
<td>Popeyes*</td>
</tr>
<tr>
<td>23</td>
<td>Carl’s Jr.*</td>
</tr>
<tr>
<td>24</td>
<td>Little Caesars Pizza</td>
</tr>
<tr>
<td>25</td>
<td>Long John Silver’s*</td>
</tr>
<tr>
<td>26</td>
<td>McDonald’s</td>
</tr>
<tr>
<td>27</td>
<td>Culver’s</td>
</tr>
<tr>
<td>28</td>
<td>Panda Express</td>
</tr>
<tr>
<td>29</td>
<td>Church’s Chicken</td>
</tr>
<tr>
<td>30</td>
<td>Steak n Shake*</td>
</tr>
<tr>
<td>31</td>
<td>Zaxby’s</td>
</tr>
<tr>
<td>32</td>
<td>Checkers/Rally’s</td>
</tr>
<tr>
<td>33</td>
<td>Bojangles’</td>
</tr>
<tr>
<td>34</td>
<td>Culver’s</td>
</tr>
<tr>
<td>35</td>
<td>Papa Murphy’s</td>
</tr>
<tr>
<td>36</td>
<td>Jimmy John’s*</td>
</tr>
<tr>
<td>37</td>
<td>Arby’s*</td>
</tr>
<tr>
<td>38</td>
<td>Jack in the Box</td>
</tr>
<tr>
<td>39</td>
<td>Arby’s*</td>
</tr>
<tr>
<td>40</td>
<td>Sonic Drive-In</td>
</tr>
<tr>
<td>41</td>
<td>Little Caesars Pizza</td>
</tr>
<tr>
<td>42</td>
<td>Bojangles’</td>
</tr>
<tr>
<td>43</td>
<td>Jack in the Box</td>
</tr>
<tr>
<td>44</td>
<td>Long John Silver’s*</td>
</tr>
<tr>
<td>45</td>
<td>Checkers/Rally’s</td>
</tr>
<tr>
<td>46</td>
<td>Bojangles’</td>
</tr>
<tr>
<td>47</td>
<td>Popeyes*</td>
</tr>
<tr>
<td>48</td>
<td>Domino’s Pizza</td>
</tr>
<tr>
<td>49</td>
<td>Jason’s Deli</td>
</tr>
<tr>
<td>50</td>
<td>Papa Murphy’s</td>
</tr>
</tbody>
</table>

Notes:
- * denotes a发生变化 (changed) restaurant.

99 Ranch Market - The largest Asian American supermarket chain on the West Coast.

Ai Hoa Supermarket - Formerly a large Chinese-Vietnamese American chain in southern California, now operates one store in Chinatown, Los Angeles.

Diho Supermarket - Chinese American

Hong Kong Supermarket - Chinese American supermarket chain.

Island Pacific Supermarket - Filipino American chain in California and Nevada.

Marukai - Japanese American supermarket.

Mitsuwa - Japanese American supermarket chain.

Seafood City - Filipino American supermarket chain.

Shun Fat Supermarket - Chinese American supermarket.

Uwajimaya - Asian American supermarket chain in the Pacific Northwest.

Aldi (the US operations of a German group)

Food 4 Less

Grocery Outlet (west)

Marc's

Price Chopper (New York and Pennsylvania)

PriceRite (Connecticut, New York, Massachusetts, Rhode Island and Pennsylvania--Owned by Wakefern)

Supervalu (midwest, mixed franchiser and directly-owned stores, uses banners: Cub Foods, Save-A-Lot and more)

WinCo Foods (west)

Fiesta Supermarket - Mexican-American, primarily in Texas

Publix Sabor - Hispanic, operated by Publix.

Superior Warehouse - Mexican American

Supermercados Gigante - Mexico-based supermarket chain with locations in the US.

Acme

Albertsons

Albertsons LLC

Baker's

bigg's

Bloom

Bristol Farms

Carrs

Costco

County Market

Cub Foods

Dillon's

Dominick's

Farm Fresh

Farmer Jack

Aldi (the US operations of a German group) discount chains

Food 4 Less discount chains

Grocery Outlet (west) discount chains

Marc's discount chains

Price Chopper (New York and Pennsylvania) discount chains

PriceRite (Connecticut, New York, Massachusetts, Rhode Island and Pennsylvania--Owned by Wakefern) discount chains

Supervalu (midwest, mixed franchiser and directly-owned stores, uses banners: Cub Foods, Save-A-Lot and more) discount chains

WinCo Foods (west) discount chains

Fiesta Supermarket - Mexican-American, primarily in Texas Hispanic/Latino

Publix Sabor - Hispanic, operated by Publix. Hispanic/Latino

Superior Warehouse - Mexican American Hispanic/Latino

Supermercados Gigante - Mexico-based supermarket chain Hispanic/Latino

Acme National chains supervalu

Albertsons National chains supervalu

Baker's National chains Kroger

bigg's National chains supervalu Delhaize Group (Belgian company's US subsidiaries)

Bloom National chains supervalu

Bristol Farms National chains supervalu

Carrs National chains safeway

Costco National chains

County Market National chains

Cub Foods National chains supervalu

Dillon's National chains Kroger

Dominick's National chains safeway

Farm Fresh National chains supervalu

Farmer Jack National chains A and P
<table>
<thead>
<tr>
<th>Chain Name</th>
<th>Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food 4 Less</td>
<td>Kroger</td>
</tr>
<tr>
<td>Food Emporium</td>
<td>A and P</td>
</tr>
<tr>
<td>FoodsCo</td>
<td>Delhaize Group (Belgian company's US subsidiaries)</td>
</tr>
<tr>
<td>Fred Meyer</td>
<td>Kroger</td>
</tr>
<tr>
<td>Fry's Food</td>
<td>Kroger</td>
</tr>
<tr>
<td>Genuardi's</td>
<td>Kroger</td>
</tr>
<tr>
<td>Giant Food (Maryland)</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>Giant Food (Pennsylvania)</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>Hannaford</td>
<td>Delhaize Group (Belgian company's US subsidiaries)</td>
</tr>
<tr>
<td>Harris Teeter</td>
<td></td>
</tr>
<tr>
<td>Harvey's</td>
<td>Delhaize Group (Belgian company's US subsidiaries)</td>
</tr>
<tr>
<td>Henhouse</td>
<td>supervalu</td>
</tr>
<tr>
<td>Hornbacher's</td>
<td>Kroger</td>
</tr>
<tr>
<td>Jay C</td>
<td>Delhaize Group (Belgian company's US subsidiaries)</td>
</tr>
<tr>
<td>Jewel/Jewel-Osco</td>
<td>supervalu</td>
</tr>
<tr>
<td>Kash n' Karry</td>
<td>Kroger</td>
</tr>
<tr>
<td>King Soopers</td>
<td></td>
</tr>
<tr>
<td>Kmart</td>
<td>Kroger</td>
</tr>
<tr>
<td>Kroger</td>
<td>supervalu</td>
</tr>
<tr>
<td>Lazy Acres</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>Lucky Stores (used to be Max Foods) (3 locations Alhambra, El Centro, and Montebello, CA)</td>
<td>supervalu</td>
</tr>
<tr>
<td>Pavilions</td>
<td>safeway</td>
</tr>
<tr>
<td>Peapod</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>Piggly Wiggly</td>
<td>Kroger</td>
</tr>
<tr>
<td>QFC</td>
<td>Kroger</td>
</tr>
<tr>
<td>Ralphs</td>
<td>safeway</td>
</tr>
<tr>
<td>Randalls</td>
<td>safeway</td>
</tr>
<tr>
<td>Safeway</td>
<td>supervalu</td>
</tr>
<tr>
<td>Save-A-Lot</td>
<td>supervalu</td>
</tr>
<tr>
<td>Scott's Food & Pharmacy</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>see also: Giant-Stop & Shop</td>
<td>supervalu</td>
</tr>
<tr>
<td>Shaw's</td>
<td>supervalu</td>
</tr>
<tr>
<td>Shop 'n Save</td>
<td>supervalu</td>
</tr>
<tr>
<td>Shop 'n Save (Singapore, not the Shop 'n Save owned by SuperValu)</td>
<td>Delhaize Group (Belgian company's US subsidiaries)</td>
</tr>
<tr>
<td>Shoppers Food & Pharmacy</td>
<td>supervalu</td>
</tr>
<tr>
<td>Smiths</td>
<td>Kroger</td>
</tr>
<tr>
<td>Star Market</td>
<td>Ahold (Dutch company's US subsidiaries)</td>
</tr>
<tr>
<td>Stop & Shop</td>
<td>supervalu</td>
</tr>
<tr>
<td>Sunflower Market</td>
<td>supervalu</td>
</tr>
<tr>
<td>Super Saver Foods</td>
<td>supervalu</td>
</tr>
<tr>
<td>Store Name</td>
<td>Chain Type</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>SuperValu</td>
<td>National chains</td>
</tr>
<tr>
<td>Target Stores</td>
<td>National chains</td>
</tr>
<tr>
<td>Tom Thumb</td>
<td>National chains</td>
</tr>
<tr>
<td>Tops</td>
<td>National chains</td>
</tr>
<tr>
<td>Vons</td>
<td>National chains</td>
</tr>
<tr>
<td>Waldbaum's</td>
<td>National chains</td>
</tr>
<tr>
<td>Wal-Mart</td>
<td>National chains</td>
</tr>
<tr>
<td>Whole Foods</td>
<td>National chains</td>
</tr>
<tr>
<td>WinCo Foods</td>
<td>National chains</td>
</tr>
<tr>
<td>Winn-Dixie</td>
<td>National chains</td>
</tr>
<tr>
<td>Acme Fresh Market, operating in the Akron, Ohio area</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Andronico's (California)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Bashas' (Arizona)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Big Y Foods (New England)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Bi-Lo Foods</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Brookshire Brothers (Texas)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Brookshire's Also runs Super1 Foods in East Texas and Shreveport, LA (Texas & Louisiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Buehler's Buy-Low (Indiana, Illinois, Kentucky)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Byerly's</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Cannata's Family Market (southern Louisiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Clemens (PA)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Copps Food Center</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Copps Food Center (Wisconsin)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>County Market</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>C-Town</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>D&W Food Centers (Michigan)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>D'Agostino's (New York)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>DeMoulas' Market Basket (New England - Massachusetts/New Hampshire)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Fareway (Iowa)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>FasChec (Charleston, West Virginia area)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Felpausch (Michigan)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Fiesta Food Stores (Houston, Dallas & Austin, Texas) Hispanic and International foods.</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Food Basket</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Food City (Kentucky, Virginia, Tennessee)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Food Giant</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>FoodFair (Southeast Ohio, Eastern Kentucky, and Western West Virginia)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>FoodLand (Hawaii)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>FoodLand Supermarkets(Western Pennsylvania)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Foodtown (Northeast, mainly New Jersey) (a similarly named store, "Food Town", operates in the Houston, Texas area)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Gerland's (Houston)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Giant Eagle (eastern United States)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Glen's (Northern Michigan)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Grocery Chain</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Grand Union (AKA GU Family Markets)</td>
<td></td>
</tr>
<tr>
<td>Haggen Top Food & Drug (Washington, Oregon)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Harding's Friendly Markets (Southwest Michigan)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>H-E-B (Texas) Has expanded in to Mexico and soon</td>
<td></td>
</tr>
<tr>
<td>Louisiana. H-E-B Central Market is a competitor to Whole Foods (Health) Largest grocer in Texas.</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Heinen's Fine Foods (Greater Cleveland)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Hugo's (North Dakota, Minnesota)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Hy-Vee Food Stores (Hundreds of stores in 7 states)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Ingles (south)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Jons (Los Angeles inner-city)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Karns Foods (Central Pennsylvania)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Key Food</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>King Kullen (Long Island)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Kowalski's (Minnesota)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Lowes Foods (North Carolina)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Lund's (Minnesota)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Magruder's (Washington, DC region)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Market Basket (SE Texas and SW Louisiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Mars (Greater Baltimore area)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Marsh (Indiana and Ohio, includes O'Malia's and Lo-Bill chains)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Martin's Super Food Stores (New York)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Martin's Super Markets (Indiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Mayfair</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Meijer (midwest)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Minyard's (Dallas/Fort Worth Metroplex, operates also under the names "Carnival", an ethnic-oriented line, and "Sack and Save", a discount line)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Nash Finch Company (Upper midwest)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Nugget Markets (Northern California)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Omni Foods (Massachusetts and New Hampshire)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>P&C Foods</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Pathmark (eastern United States)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Penn Traffic (Pennsylvania, New York, Vermont, New Hampshire)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Pick 'n Save (Wisconsin, Illinois)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Publix (southeast United States)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Publix (southeastern US)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Quality Markets</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Quality Markets (New York and Pennsylvania)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Rainbow Foods (Minnesota)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Raley's (western U.S., own Nob Hill and Bel Air)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Rice Supermarkets Also *Rice Epicurean Markets (Houston)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Riverside Markets</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Robert's Fresh Market* (New Orleans, Louisiana Metro area)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Roundy's</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Rouse's Supermarket (Louisiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Safeway (aka Preston-Safeway, unrelated to Safeway Inc.; Central Indiana)</td>
<td>Regional/local chains</td>
</tr>
<tr>
<td>Save-Mart (California)</td>
<td>Regional/local chains</td>
</tr>
</tbody>
</table>
Schnucks (Missouri, Illinois, Indiana) | Regional/local chains
Scolari's Food and Drug (California, Nevada) | Regional/local chains
Sears Grand (nationwide) | Regional/local chains
Sendik's Food Market (Wisconsin) | Regional/local chains
Sentry Foods (Wisconsin) | Regional/local chains
Simon Delivers (Minneapolis/St. Paul, Minnesota/Wisconsin online grocery) | Regional/local chains
Spartan Stores (Michigan) | Regional/local chains
Stater Brothers (California) | Regional/local chains
Stew Leonard's (New York City metropolitan area) | Regional/local chains
Stewart's Shops (New York and Vermont) | Regional/local chains
Strack and Van Til (Northwestern Indiana) | Regional/local chains
Sullivan's Foods (Northern & Central Illinois) | Regional/local chains
Sunshine Foods (Upper Mid-west) | Regional/local chains
Turco's (New York) | Regional/local chains
Ukrop's (central Virginia) | Regional/local chains
United (West Texas) | Regional/local chains
Victory (soon to be defunct, Massachusetts & New Hampshire) | Regional/local chains
Wade's (Virginia) | Regional/local chains
Wegmans (Northeast) | Regional/local chains
Weis Markets - Mid-Atlantic (Pennsylvania, Maryland, New York, New Jersey, West Virginia) | Regional/local chains
Westborn Market (Southeast Michigan) | Regional/local chains
Whitefront - California (defunct) | Regional/local chains
Wilson Farms (Upstate New York) | Regional/local chains
Woodman's Food Market (Wisconsin, Northern Illinois) | Regional/local chains
Affiliated Food Stores | Retailers cooperatives
Affiliated Foods Midwest | Retailers cooperatives

Apple Market | Retailers cooperatives
Associated Food Stores | Retailers cooperatives
Associated Grocers | Retailers cooperatives
Associated Grocers of Florida | Retailers cooperatives
Associated Grocers of the South | Retailers cooperatives
Associated Wholesale Grocers | Retailers cooperatives
Associated Wholesalers | Retailers cooperatives
Cash Saver | Retailers cooperatives
Central Grocers Cooperative | Retailers cooperatives
Country Mart | Retailers cooperatives
IGA | Retailers cooperatives
Price Chopper / Price Mart | Retailers cooperatives
Royal Blue (supermarket) (now defunct; founded in the 1930s) | Retailers cooperatives
ShopRite/Wakefern Food Corporation | Retailers cooperatives
Shurfine Markets | Retailers cooperatives
SunFresh | Retailers cooperatives
ThriftWay | Retailers cooperatives

Associated Wholesale Grocers
<table>
<thead>
<tr>
<th>Grocers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Western Grocers</td>
<td>Retailers cooperatives</td>
</tr>
<tr>
<td>Western Family Foods (supermarket wholesaler)</td>
<td>Retailers cooperatives</td>
</tr>
<tr>
<td>Central Market (division of H-E-B)</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>EarthFare - Specialty market in the Southeast</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Fairway (market) - New York City</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>FreshDirect - online grocer in New York City</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Mollie Stone's</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Stew Leonard's - northern New York City suburbs</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Trader Joe's (owned by the German Aldi group)</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Whole Foods Market</td>
<td>Specialty/Natural</td>
</tr>
<tr>
<td>Wild Oats Markets (owns Capers Community Market, Henry's Farmers Market, and Sun Harvest)</td>
<td>Specialty/Natural</td>
</tr>
</tbody>
</table>
REFERENCES

Dunphy and Fisher. 1996. [Citation to add.]

Handy, S. 1996a. Methodologies for exploring the link between urban form and travel behavior. *Transportation Research Record* 1, 2:151-165.

